首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
【转载】 强化学习(十)Double DQN (DDQN)
】的更多相关文章
【转载】 强化学习(十)Double DQN (DDQN)
原文地址: https://www.cnblogs.com/pinard/p/9778063.html ----------------------------------------------------------------------------------------------- 在强化学习(九)Deep Q-Learning进阶之Nature DQN中,我们讨论了Nature DQN的算法流程,它通过使用两个相同的神经网络,以解决数据样本和网络训练之前的相关性.但是还是有其他值得…
强化学习(十六) 深度确定性策略梯度(DDPG)
在强化学习(十五) A3C中,我们讨论了使用多线程的方法来解决Actor-Critic难收敛的问题,今天我们不使用多线程,而是使用和DDQN类似的方法:即经验回放和双网络的方法来改进Actor-Critic难收敛的问题,这个算法就是是深度确定性策略梯度(Deep Deterministic Policy Gradient,以下简称DDPG). 本篇主要参考了DDPG的论文和ICML 2016的deep RL tutorial. 1. 从随机策略到确定性策略 从DDPG这个名字看,它是由D(Dee…
强化学习(十五) A3C
在强化学习(十四) Actor-Critic中,我们讨论了Actor-Critic的算法流程,但是由于普通的Actor-Critic算法难以收敛,需要一些其他的优化.而Asynchronous Advantage Actor-critic(以下简称A3C)就是其中比较好的优化算法.本文我们讨论A3C的算法原理和算法流程. 本文主要参考了A3C的论文,以及ICML 2016的deep RL tutorial. 1. A3C的引入 上一篇Actor-Critic算法的代码,其实很难收敛,无论怎么调参…
强化学习(十四) Actor-Critic
在强化学习(十三) 策略梯度(Policy Gradient)中,我们讲到了基于策略(Policy Based)的强化学习方法的基本思路,并讨论了蒙特卡罗策略梯度reinforce算法.但是由于该算法需要完整的状态序列,同时单独对策略函数进行迭代更新,不太容易收敛. 在本篇我们讨论策略(Policy Based)和价值(Value Based)相结合的方法:Actor-Critic算法. 本文主要参考了Sutton的强化学习书第13章和UCL强化学习讲义的第7讲. 1. Actor-Critic…
强化学习(十九) AlphaGo Zero强化学习原理
在强化学习(十八) 基于模拟的搜索与蒙特卡罗树搜索(MCTS)中,我们讨论了MCTS的原理和在棋类中的基本应用.这里我们在前一节MCTS的基础上,讨论下DeepMind的AlphaGo Zero强化学习原理. 本篇主要参考了AlphaGo Zero的论文, AlphaGo Zero综述和AlphaGo Zero Cheat Sheet. 1. AlphaGo Zero模型基础 AlphaGo Zero不需要学习人类的棋谱,通过自我对弈完成棋力提高.主要使用了两个模型,第一个就是我们上一节介绍MC…
强化学习(十)Double DQN (DDQN)
在强化学习(九)Deep Q-Learning进阶之Nature DQN中,我们讨论了Nature DQN的算法流程,它通过使用两个相同的神经网络,以解决数据样本和网络训练之前的相关性.但是还是有其他值得优化的点,文本就关注于Nature DQN的一个改进版本: Double DQN算法(以下简称DDQN). 本章内容主要参考了ICML 2016的deep RL tutorial和DDQN的论文<Deep Reinforcement Learning with Double Q-learning…
强化学习(十二) Dueling DQN
在强化学习(十一) Prioritized Replay DQN中,我们讨论了对DQN的经验回放池按权重采样来优化DQN算法的方法,本文讨论另一种优化方法,Dueling DQN.本章内容主要参考了ICML 2016的deep RL tutorial和Dueling DQN的论文<Dueling Network Architectures for Deep Reinforcement Learning>(ICML 2016). 1. Dueling DQN的优化点考虑 在前面讲到的DDQN中,…
【论文研读】强化学习入门之DQN
最近在学习斯坦福2017年秋季学期的<强化学习>课程,感兴趣的同学可以follow一下,Sergey大神的,有英文字幕,语速有点快,适合有一些基础的入门生. 今天主要总结上午看的有关DQN的一篇论文<Human-level control through deep reinforcement learning>,在Atari 2600 games上用DQN网络训练的,训练结果明,DQN能够比较稳定的收敛到Human-level的游戏水平. 前言 目前,强化学习已经在现实中很多复杂的…
强化学习(十八) 基于模拟的搜索与蒙特卡罗树搜索(MCTS)
在强化学习(十七) 基于模型的强化学习与Dyna算法框架中,我们讨论基于模型的强化学习方法的基本思路,以及集合基于模型与不基于模型的强化学习框架Dyna.本文我们讨论另一种非常流行的集合基于模型与不基于模型的强化学习方法:基于模拟的搜索(Simulation Based Search). 本篇主要参考了UCL强化学习课程的第八讲,第九讲部分. 1. 基于模拟的搜索概述 什么是基于模拟的搜索呢?当然主要是两个点:一个是模拟,一个是搜索.模拟我们在上一篇也讨论过,就是基于强化学习模型进行采样,得到样…
强化学习系列之:Deep Q Network (DQN)
文章目录 [隐藏] 1. 强化学习和深度学习结合 2. Deep Q Network (DQN) 算法 3. 后续发展 3.1 Double DQN 3.2 Prioritized Replay 3.3 Dueling Network 4. 总结 强化学习系列系列文章 我们终于来到了深度强化学习. 1. 强化学习和深度学习结合 机器学习=目标+表示+优化.目标层面的工作关心应该学习到什么样的模型,强化学习应该学习到使得激励函数最大的模型.表示方面的工作关心数据表示成什么样有利于学习,深度学习是最…