BZOJ1415 聪聪与可可 - 期望dp】的更多相关文章

传送门 题目大意: 一张无向图上有一只猫和一只老鼠,猫先走,鼠后走.猫每次会向与其相邻的并且距离老鼠最近的点移动(若距离相等去编号较小的),如果移动一步后还没吃到老鼠,还可以再移动一步(算在一个时间内的).老鼠每次会向相邻的点移动或者不移动,所有选择的概率相同.问猫期望多少时间能够吃到老鼠. 题目分析: 期望dp:设\(f[i][j]\)表示猫在i点,鼠在j点,猫吃到鼠的期望步数.\(P[i][j]\)表示与i相邻的点中距离j最近且编号最小的点(bfs预处理).\(deg[i]\)表示i的度数.…
[题意]给定无向图,聪聪和可可各自位于一点,可可每单位时间随机向周围走一步或停留,聪聪每单位时间追两步(先走),问追到可可的期望时间.n<=1000. [算法]期望DP+记忆化搜索 [题解]首先因为聪聪的步数大于可可,所以不可能出现循环,因此是DAG上的期望DP,用记忆化搜索解决. 每个点bfs预处理p[x][y]表示x走向y的第一步位置,设f[x][y]表示聪聪在x可可在y追上的期望时间. $$f(x,y)=\sum_{z}\frac{f(g[g[i][j]]][j],z)}{out[x]+1…
我们可以用n次BFS预处理出 to[][]数组,to[i][j]表示聪聪从i点到j点第一步会走哪个点. 那么对于聪聪在i点,可可在j点,聪聪先走,定义dp[i][j]表示步数期望. 那么显然有dp[i][j]=(sigma(dp[p][w])+dp[p][j])/(dee[j]+1)+1. 其中p表示to[to[i][j]][j],w表示j点邻接的点. 边界状态就是 如果i==j,那么dp[i][j]=0. 如果i和j的距离在聪聪的一步之内,那么dp[i][j]=1. 记忆化搜索一下即可. #…
题意:给出n个点m条边的无向图,两个主角聪聪和可可开始分别在S点和T点.聪聪想吃掉可可,每次由匆匆先行动后来可可行动.聪聪的行动是选他到可可的最短路上的点走最多两步(如果最短路有几条就选编号最小的走),可可的行动是等概率选择一个出点或者不动.问聪聪吃掉可可的期望行动次数. 解法:这道题还是蛮有意思的. 首先我们必须得先注意到聪聪得行动是“智能”的不随机,这样我们不能计算的时候再考虑,我们必须得先预处理nxt[x][y]代表若聪聪在x点可可在y点下一步聪聪会走那个点(根据定义就是x到y最短路的编号…
期望dp水题~ 你发现每一次肯定是贪心走 2 步,(只走一步的话就可能出现环) 然后令 $f[i][j]$ 表示聪在 $i$,可在 $j$,且聪先手两个人碰上面的期望最小次数. 用记忆化搜索转移就行了. code: #include <queue> #include <cstdio> #include <vector> #include <cstring> #include <algorithm> #define N 1004 #define L…
LINK:聪聪与可可 这道题的核心是 想到如何统计答案. 如果设f[i][j]表示第i个时刻... 可以发现还需要统计位置信息 以及上一次到底被抓到没有的东西 不太好做. 两者的位置都在变化 所以需要设出状态 f[i][j]表示第聪聪在i位置 可可在j位置的期望步数. 容易想到转移. i==j->0 j是i的下一步或者下下一步 期望为1. 由于聪聪的走位是固定的 所以 设其走两步的位置为 w 而可可是随机的 所以只需要枚举一下可可的转移即可. 由于状态的无序转移性 所以需要记忆化搜索.非常有趣.…
题意:给一张无向图,有一只猫和一只老鼠,猫每秒会向老鼠的方向移动两个单位,若它们的距离为一,那么只会移动一个单位,老鼠会等概率向周围移动一步或不动,求猫抓到老鼠的期望时间. SolutionluoguAC第800题. 注意到猫的运动之和猫的位置和老鼠的位置有关,我们可以对其进行预处理,注意若有多种方案的情况会向编号小的点移动. 然后发现猫和老鼠的距离一定是会减小的,不如记录状态进行记忆化搜索,这样转移是不会出现环的. Code #include<iostream> #include<cs…
题目 输入格式 数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数. 第2行包含两个整数C和M,以空格分隔,分别表示初始时聪聪和可可所在的景点的编号. 接下来E行,每行两个整数,第i+2行的两个整数Ai和Bi表示景点Ai和景点Bi之间有一条路. 所有的路都是无向的,即:如果能从A走到B,就可以从B走到A. 输入保证任何两个景点之间不会有多于一条路直接相连,且聪聪和可可之间必有路直接或间接的相连. 输出格式 输出1个实数,四舍五入保留三位小数,表示平均多少个时…
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1415 noip2016 D1T3,多么痛的领悟...看来要恶补一下与期望相关的东西了. 这是一道经典的求期望的题,尽管我的代码里把那个记忆化搜索那个叫做dp,但事实上这不是动态规划,只是递推. 先预处理出x[i][j],表示聪聪在i,可可在j时,下一步聪聪到达的顶点标号,f[i][j]是那张记忆化搜索的表,表示聪聪在i,可可在j时,期望所需的时间,out[i]表示i点的出度(其实就是度啦,…
期望相关: 数学期望,可以简单理解的加权平均数.设有一系列的值$x_i$,每个值被取到的概率为$p_i$,则期望$E=\sum\limits_{i=1}^n p_i x_i$. 期望具有线性性:$$E(aX+bY)=aE(X)+bE(Y)$$ $$E(XY)=E(X)E(Y)$$ 大概就是说求期望的时候正着反着乱序着乱搞求出来的都是对的... 基于期望的线性性,我们可以在概率和期望之间建立一定的递推关系,这样就可以通过动态规划来解决一些概率问题. 比如NOI2005的聪聪和可可. 题目大意:给定…
题目描述 输入 数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数. 第2行包含两个整数C和M,以空格分隔,分别表示初始时聪聪和可可所在的景点的编号. 接下来E行,每行两个整数,第i+2行的两个整数Ai和Bi表示景点Ai和景点Bi之间有一条路. 所有的路都是无向的,即:如果能从A走到B,就可以从B走到A. 输入保证任何两个景点之间不会有多于一条路直接相连,且聪聪和可可之间必有路直接或间接的相连. 输出 输出1个实数,四舍五入保留三位小数,表示平均多少个时间单…
[pixiv] https://www.pixiv.net/member_illust.php?mode=medium&illust_id=57148470 Descrition 首先很明显是期望dp.但是如何进行转移呢? 对于dp,什么样的状态容易储存呢?怎样又分解成相应的子问题呢?于是发现,对于这个问题,我们需要知道猫的位置到老鼠位置的期望值.与这样的相似的状态有很多.观察数据范围,是可以用二维数组存下的.所以我们用f[i][j]表示猫在i点,老鼠在j点的答案. 转移方程: f[i][j]=…
[BZOJ1415][NOI2005]聪聪和可可(动态规划,数学期望) 题面 BZOJ 题解 先预处理出当可可在某个点,聪聪在某个点时 聪聪会往哪里走 然后记忆化搜索一下就好了 #include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #include<cmath> #include<algorithm> #include<set> #i…
题目描述 输入 数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数. 第2行包含两个整数C和M,以空格分隔,分别表示初始时聪聪和可可所在的景点的编号. 接下来E行,每行两个整数,第i+2行的两个整数Ai和Bi表示景点Ai和景点Bi之间有一条路. 所有的路都是无向的,即:如果能从A走到B,就可以从B走到A. 输入保证任何两个景点之间不会有多于一条路直接相连,且聪聪和可可之间必有路直接或间接的相连. 输出 输出1个实数,四舍五入保留三位小数,表示平均多少个时间单…
前言:学长讲的太神了:自己还能推出来DP式子,挺开心. -------------------------- 题目链接 题目大意:给定一张含有$n$个结点$m$条边的无向连通图.现在聪聪在点$s$,可可在点$t$.每秒钟可可能等概率走向相邻的结点或原地不动,而聪聪总是向更靠近可可的地方沿最短路走两步(如果走一步就能找到可可就不往下走了).问聪聪找到可可的时间的期望.$n,m\leq 1000$ ---------------------- 我们首先解决第一个限制条件:沿最短路走. 假设聪聪目前在…
其实题不难,不知提交了几次...不能代码MD...注意一些基本问题...SB概率题 #include <iostream> #include <cstdio> #include <cstring> #define N 1001 using namespace std; double f[N][N]; int n,m,cnt,a,b; *N+]; int head[N],ds[N],q[N],dis[N][N],p[N][N]; inline int read() { ,…
用最短路暴力搞出s(i, j)表示聪聪在i, 可可在j处时聪聪会走的路线. 然后就可以dp了, dp(i, j) = [ dp(s(s(i,j), j), j) + Σdp(s(s(i,j), j), to) ] / (degree[i]+1) 边(j, to)存在. 复杂度应该差不多是O(NM) ------------------------------------------------------------------------------- #include<cstdio> #i…
题目链接:https://vjudge.net/problem/HYSBZ-1415 1415: [Noi2005]聪聪和可可 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2101  Solved: 1228[Submit][Status][Discuss] Description Input 数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数. 第2行包含两个整数C和M,以空格分隔,分别表示初始时聪聪和可…
http://www.lydsy.com/JudgeOnline/problem.php?id=1415 (题目链接) 题意 一张图,聪聪想吃可可.每单位时间聪聪可以先移动两次:可可后移动一次或停在原地,它们的概率相等.问聪聪吃到可可的期望时间. Solution 先bfs跑出两点间的最短距离.然后记忆化搜索就可以了,很水.. 代码 // bzoj1415 #include<algorithm> #include<iostream> #include<cstdlib>…
之前做的一些图上的期望步数的题大多用到高斯消元来求解(HNOI游走,SDOI走迷宫,etc),因此我一开始做这道题的时候想偏了- 这道题的性质:聪聪和可可之间的最短路长度严格递减.因为聪聪总可以多走一步,那么变化有三种情况:最短路长度-1,-2,-3 于是我们发现,聪聪和可可所处的不同的状态之间是有序的,这让这道题与其他的图上期望步数题不同.例如"游走"中可以走到1再走到2再走到1-.,走到1和走到2的状态之间没有先后顺序.但这个题中永远是聪聪可可之间距离大的状态转移到聪聪可可之间距离…
1415: [Noi2005]聪聪和可可 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2335  Solved: 1373[Submit][Status][Discuss] Description Input 数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数. 第2行包含两个整数C和M,以空格分隔,分别表示初始时聪聪和可可所在的景点的编号. 接下来E行,每行两个整数,第i+2行的两个整数Ai和Bi表示景点…
BZOJ_1415_[Noi2005]聪聪和可可_概率DP+bfs Description Input 数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数. 第2行包含两个整数C和M,以空格分隔,分别表示初始时聪聪和可可所在的景点的编号. 接下来E行,每行两个整数,第i+2行的两个整数Ai和Bi表示景点Ai和景点Bi之间有一条路. 所有的路都是无向的,即:如果能从A走到B,就可以从B走到A. 输入保证任何两个景点之间不会有多于一条路直接相连,且聪聪和可可之间…
题目大意:给你一个无向联通图,节点数n<=1000.聪聪有一个机器人从C点出发向在M点的可可移动,去追赶并吃掉可可,在单位时间内,机器人会先朝离可可最近的节点移动1步,如果移动一步机器人并不能吃掉可可,那机器人会再向可可的方向移动一格,如果有两个节点到可可的距离相等,那机器人会移动到编号较小的一个节点.然后可可会等可能性移动到与它的任意一个相连的节点或者原地不动(即使她明知道移动到某个节点会被吃掉).即1/(outc[x]+1),outc为出度.求可可被吃掉时机器人走的期望时间 概率DP记忆化+…
Description Input 数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数. 第2行包含两个整数C和M,以空格分隔,分别表示初始时聪聪和可可所在的景点的编号. 接下来E行,每行两个整数,第i+2行的两个整数Ai和Bi表示景点Ai和景点Bi之间有一条路. 所有的路都是无向的,即:如果能从A走到B,就可以从B走到A. 输入保证任何两个景点之间不会有多于一条路直接相连,且聪聪和可可之间必有路直接或间接的相连. Output 输出1个实数,四舍五入保留三…
Input 数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数. 第2行包含两个整数C和M,以空格分隔,分别表示初始时聪聪和可可所在的景点的编号. 接下来E行,每行两个整数,第i+2行的两个整数Ai和Bi表示景点Ai和景点Bi之间有一条路. 所有的路都是无向的,即:如果能从A走到B,就可以从B走到A. 输入保证任何两个景点之间不会有多于一条路直接相连,且聪聪和可可之间必有路直接或间接的相连. Output 输出1个实数,四舍五入保留三位小数,表示平均多少个时…
传送门 题意:小兔子乖乖~~~ 题意·真:无向图吗,聪抓可,每个时间聪先走可后走,聪一次可以走两步,朝着里可最近且点编号最小的方向:可一次只一步,等概率走向相邻的点或不走 求聪抓住可的期望时间 和游走很像,只不过这道题限制了一个人走的方向,两人间的距离具有了阶段性!可以直接$DP$ 求期望一般倒推 $f[i][j]$表示聪在$i$可在$j$抓住的期望时间 $bfs$预处理$g[i][j]$表示聪在$i$可在$j$下一步聪走到哪里 这样聪的行动就知道了,转移枚举可的行动就行啦 边界:$f[i][i…
Input 数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数. 第2行包含两个整数C和M,以空格分隔,分别表示初始时聪聪和可可所在的景点的编号. 接下来E行,每行两个整数,第i+2行的两个整数Ai和Bi表示景点Ai和景点Bi之间有一条路. 所有的路都是无向的,即:如果能从A走到B,就可以从B走到A. 输入保证任何两个景点之间不会有多于一条路直接相连,且聪聪和可可之间必有路直接或间接的相连. Output 输出1个实数,四舍五入保留三位小数,表示平均多少个时…
1415: [Noi2005]聪聪和可可 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1635  Solved: 958[Submit][Status][Discuss] Description Input 数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数. 第2行包含两个整数C和M,以空格分隔,分别表示初始时聪聪和可可所在的景点的编号. 接下来E行,每行两个整数,第i+2行的两个整数Ai和Bi表示景点A…
Description Input 数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数. 第2行包含两个整数C和M,以空格分隔,分别表示初始时聪聪和可可所在的景点的编号. 接下来E行,每行两个整数,第i+2行的两个整数Ai和Bi表示景点Ai和景点Bi之间有一条路. 所有的路都是无向的,即:如果能从A走到B,就可以从B走到A. 输入保证任何两个景点之间不会有多于一条路直接相连,且聪聪和可可之间必有路直接或间接的相连. Output 输出1个实数,四舍五入保留三…
1415: [Noi2005]聪聪和可可 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1640  Solved: 962 Description Input 数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数. 第2行包含两个整数C和M,以空格分隔,分别表示初始时聪聪和可可所在的景点的编号. 接下来E行,每行两个整数,第i+2行的两个整数Ai和Bi表示景点Ai和景点Bi之间有一条路. 所有的路都是无向的,即…