BZOJ 3503 高斯消元】的更多相关文章

思路: 高斯消元就好啦 注意每个格子最多只能和4个相邻 所以是 n*m*n*m*5 的 并不会TLE //By SiriusRen #include <cstdio> #include <cstring> #include <algorithm> using namespace std; int n,m,a[44][44],xx[]={0,0,1,-1,0},yy[]={1,-1,0,0,0},eli[1666][1666],b[1666],ans[1666]; int…
题意: 告诉你一个K维球体球面上的K+1个点问球心坐标. sol: 乍一看还以为是K维的二分答案然后判断距离...真是傻逼了...你看乱七八糟的题目做多了然后就会忘记最有用的基本计算... 我们可以看到,假设圆心O,根据他告诉我们的公式我们可以得到给出任意两个点和圆心的一个方程,这个方程有k个未知数,那么我们随意构造K个方程然后跑一跑高斯消元. 机械工业的线代还是挺清楚易懂的...每次枚举到一个主元行就把下面每一个都消了...恩...比较直观... 因为最后一个换行还PE了一发...有点醉= =…
思路: 先算一下每条边经过次数的期望 转化为每个点经过次数的期望 边的期望=端点的期望/度数 统计一下度数 然后高斯消元 贪心附边权--. //By SiriusRen #include <cmath> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; #define eps 1e-10 int n,m,d[250050];double a[505][…
思路: 排个序 消元 完事~ 但是! 坑爹精度毁我人生 我hhhh他一脸 红红火火恍恍惚惚 //By SiriusRen #include <cmath> #include <cstdio> #include <algorithm> using namespace std; #define double long double const int N=505;const double eps=1e-8; int n,m,vis[N],ans2;double ans; s…
题目大意: 每条路径上有一个距离值,从1走到N可以得到一个所有经过路径的异或和,求这个异或和的数学期望 这道题直接去求数学期望的DP会导致很难列出多元方程组 我们可以考虑每一个二进制位从1走到N的平均概率值 因为整个图是联通的那么所有点都默认会处于多元方程组中 Pi = p[i] * sigma( v&d[i][j]?(1-Pj):Pj) v是当前二进制位代表的数值 这里需要注意的是自环的加边情况,自环只加一次边,不能向平时那样加无向边一样 #include <cstdio> #inc…
思路: //By SiriusRen #include <cstdio> #include <cstring> #include <algorithm> using namespace std; const int inf=0x7fffffff,mod=10086; int n,a[100050],q,flag=1,rec[66],ans; void Gauss(){ for(int i=30,j;~i;i--){ for(j=flag;j<=n;j++)if(a…
思路: 最大: 所有线性基异或一下 次大: 最大的异或一下最小的线性基 搞定~ //By SiriusRen #include <cstdio> #include <algorithm> using namespace std; int n,flag=1,ans,a[100050]; int main(){ scanf("%d",&n); for(int i=1;i<=n;i++)scanf("%d",&a[i]); f…
LINK 题意:看题目不如看样例解释.给出有n个数的集合,对这些子集中的数求异或,升序统计所有子集得到的数(重复会被计入),询问一个数x,问这个数出现的第一个位置 思路:在这里要求一个所有可能出现的异或值,对于这个要求有个思想和概念很适用这类题——线性基.线代里面学过线性无关组,可用高斯消元解得,在本题中的线性基类似,是能够构造所有出现异或值得线性无关组.总的来说本质思维就是高斯消元. /** @Date : 2017-07-03 10:40:20 * @FileName: bzoj 2844…
偶数个相邻, 以n*m个点为变量, 建立异或方程组然后高斯消元... O((n*m)^3)复杂度看起来好像有点大...但是压一下位的话就是O((n*m)^3 / 64), 常数小, 实际也跑得很快. ------------------------------------------------------------------------------------- #include<cstdio> #include<bitset> #include<cstring>…
如果确定了第一行,那么可以推出来整个矩阵,矩阵合法的条件是n+1行全是0 所以推出来n+1行和1行的关系,然后用异或高斯消元来解即可 #include<iostream> #include<cstdio> using namespace std; const int N=45; int n,m,f[N][N][N],a[N][N],ans[N][N]; void gaosi() { for(int i=1;i<=m;i++) { int nw=i; while(!a[nw][…