关于池化(pooling)理解!!!】的更多相关文章

终于有了2个月的空闲时间,给自己消化沉淀,希望别有太多的杂事打扰.在很多课程中,我都学过卷积.池化.dropout等基本内容,但目前在脑海中还都是零散的概念,缺乏整体性框架,本系列博客就希望进行一定的归纳和梳理,谋求一个更清晰的思路. ## Outline 卷积 tensorflow-conv 池化 tensorflow-pooling 反向传播 梯度消散和梯度爆炸 ## Notes [卷积(Convolution)] 卷积的目的就是从原始数据中提取出特征,过程是利用卷积核(kernel)按照下…
一.前述 本文讲述池化层和经典神经网络中的架构模型. 二.池化Pooling 1.目标 降采样subsample,shrink(浓缩),减少计算负荷,减少内存使用,参数数量减少(也可防止过拟合)减少输入图片大小(降低了图片的质量)也使得神经网络可以经受一点图片平移,不受位置的影响(池化后相当于把图片上的点平移了)正如卷积神经网络一样,在池化层中的每个神经元被连接到上面一层输出的神经元,只对应一小块感受野的区域.我们必须定义大小,步长,padding类型池化神经元没有权重值,它只是聚合输入根据取最…
自然语言处理的CNN模型中几种常见的池化方法 本文是在[1]的基础上进行的二次归纳. 0x00 池化(pooling)的作用   首先,回顾一下NLP中基本的CNN模型的卷积和池化的大致原理[2].filter(特征抽取器,卷积核,CV上称之为滤波器)在一个窗口(text region)上可以抽取出一个特征值,filter在整个text上滑动,将抽取出一系列特征值组成一个特征向量.这就是卷积层抽取文本特征的过程.模型中的每一个filter都如此操作,形成了不同的特征向量.   pooling层则…
在官方tutorial的帮助下,我们已经使用了最简单的CNN用于Mnist的问题,而其实在这个过程中,主要的问题在于如何设置CNN网络,这和Caffe等框架的原理是一样的,但是tf的设置似乎更加简洁.方便,这其实完全类似于Caffe的python接口,但是由于框架底层的实现不一样,tf无论是在单机还是分布式设备上的实现效率都受到一致认可. CNN网络中的卷积和池化层应该怎么设置呢?tf相应的函数是什么?具体的tutorial地址参见Tensorflow中文社区. 卷积(Convolution)…
目录 Same最大值池化 多深度的same池化 Same平均值池化 Valid池化 参考资料 池化(Pooling)操作与卷积类似,取输入张量的每个位置的矩形领域内的最大值或平均值作为该位置的输出. 池化操作分为same池化和valid池化,同时还可以设置移动的步长 Same最大值池化 举例:4行4列的张量x和2行3列的掩码进行步长为1的same最大值池化,其过程如下 池化的结果是 返回目录 多深度的same池化 多深度的same池化是在每个深度上分别进行池化操作. 举例:3行3列2深度的张量和…
作者:小傅哥 博客:https://bugstack.cn - 手写Mybatis系列文章 沉淀.分享.成长,让自己和他人都能有所收获! 一.前言 码农,只会做不会说? 你有发现吗,其实很大一部分码农,都只是会写代码,不会讲东西.一遇到述职.答辩.分享.汇报,就很难流畅且有高度.有深度,并融合一部分引入入胜的趣味性来让观众更好的接受和理解你要传递的信息. 那为什么已经做了还讲不出来呢?因为做只是在已确定目标和既定路线下的执行,但为什么确定这个目标.为什么制定这个路线.横向的参照对比.纵向的深度设…
网上看到一个池化的解释是: 为了描述大的图像,可以对不同位置的特征进行聚合统计,如计算平均值或者是最大值,即mean-pooling和max-pooling 我的想法是,图像做卷积以后,将图像信息(特征)变强了,这时候允许减小图像的尺寸(因为卷积增强了信息,现在又牺牲 一点信息,达到数据尺寸减小但信息不一定减少),这就是类似于先做加法(卷积),再做减法(池化,典型下采样),一加一减, 加的时候图像尺寸没加,信习量加了,减的时候图像尺寸和信息量减,总体是吧,总体可能就可以用了. 池化,就是把某一区…
图像大小与参数个数: 前面几章都是针对小图像块处理的,这一章则是针对大图像进行处理的.两者在这的区别还是很明显的,小图像(如8*8,MINIST的28*28)可以采用全连接的方式(即输入层和隐含层直接相连).但是大图像,这个将会变得很耗时:比如96*96的图像,若采用全连接方式,需要96*96个输入单元,然后如果要训练100个特征,只这一层就需要96*96*100个参数(W,b),训练时间将是前面的几百或者上万倍.所以这里用到了部分联通网络.对于图像来说,每个隐含单元仅仅连接输入图像的一小片相邻…
想直接看公式的可跳至第三节 3.公式修正 一.为什么需要SPP 首先需要知道为什么会需要SPP. 我们都知道卷积神经网络(CNN)由卷积层和全连接层组成,其中卷积层对于输入数据的大小并没有要求,唯一对数据大小有要求的则是第一个全连接层,因此基本上所有的CNN都要求输入数据固定大小,例如著名的VGG模型则要求输入数据大小是 (224*224) . 固定输入数据大小有两个问题: 1.很多场景所得到数据并不是固定大小的,例如街景文字基本上其高宽比是不固定的,如下图示红色框出的文字. 2.可能你会说可以…
空间金字塔池化技术, 厉害之处,在于使得我们构建的网络,可以输入任意大小的图片,不需要经过裁剪缩放等操作. 是后续许多金字塔技术(psp,aspp等)的起源,主要的目的都是为了获取场景语境信息,获取上下文的联系. 如图所示,对于选择的不同大小的区域对应到卷积之后的特征图上,得到的也是大小不一致的特征图区域,厚度为256,对于每个区域(厚度为256),通过三种划分方式进行池化: (1)直接对整个区域池化,每层得到一个点,共256个点,构成一个1x256的向量 (2)将区域划分成2x2的格子,每个格…