传送门 对于每个点,用单调栈求出它左右第一个比他大的位置. 然后对每个点O(logai)O(log_{a_i})O(logai​​)求出第一个拥有跟它不同二进制位的位置. 然后容斥一下就行了. 代码…
[题目描述] 小 H 是个善于思考的学生,现在她又在思考一个有关序列的问题.        她的面前浮现出一个长度为 n 的序列{ai},她想找出一段区间[L, R](1 <= L <= R <= n).        这个特殊区间满足,存在一个 k(L <= k <= R),并且对于任意的 i(L <= i <= R),ai 都能被 ak 整除.这样的一个特殊区间 [L, R]价值为 R - L.        小 H 想知道序列中所有特殊区间的最大价值是多少,…
[题目描述] 小Y在学树论时看到了有关二叉树的介绍:在计算机科学中,二叉树是每个结点最多有两个子结点的有序树.通常子结点被称作“左孩子”和“右孩子”.二叉树被用作二叉搜索树和二叉堆.随后他又和他人讨论起了二叉搜索树.      什么是二叉搜索树呢?二叉搜索树首先是一棵二叉树.设key[p]表示结点p上的数值.对于其中的每个结点p,若其存在左孩子lch,则key[p]>key[lch]:若其存在右孩子rch,则key[p]<key[rch]:注意,本题中的二叉搜索树应满足对于所有结点,其左子树中…
传送门 建图巧妙啊. 对于每个点的出边,我们将它们排序之后依次连边. 这样可以把O(m2)O(m^2)O(m2)的边数变成O(m)O(m)O(m)的了. 连的权值就是max(edgemax(edgemax(edge_delta,0)delta,0)delta,0) 然后用边代替点跑dijkstradijkstradijkstra就行了. 代码…
传送门 考试的时候乱搞过了. 其实题目就是让你求拓扑排序方案数. 直接树形dpdpdp然后组合数转移一下就行了. 乱搞代码…
满分:300分 直接全部爆零,真的是很坑啊! 10.30的题目+数据:链接:http://pan.baidu.com/s/1jHXLace 密码:i784 T1: 题目中的难点就是每次折叠的点可能应经被覆盖了,我的做法是递归去推出它现在在哪个位置,不仅超时,而且答案错误. 也曾想过用数组去存下它当前的位置,但是被10^18的数据吓到了. 正解:并不是所有的坐标都有用,仅仅是那m个将要用到的点有用,所以每次折叠,就只对之后的有用的k个点进行更新,这样就行了. 时间复杂度O(m^2) 不会超时的.…
\(Description\) 给定\(n\)个点\(m\)条边的有向图,求有多少个边集的子集,构成的图没有环. \(n\leq17\). \(Solution\) 问题也等价于,用不同的边集构造DAG,有多少种合法方案.我们考虑怎么构造DAG使得方案不重不漏. 我明知道一个DAG的拓扑序是唯一确定的.所以我们按照拓扑序每次转移一个点集. \(f[s][s']\)表示 构造 已经选择的点集为\(s\),当前最后一层点集为\(s'\)的DAG 的方案数. 转移时枚举不在\(s\)中的子集\(k\)…
传送门 如果观察到性质其实也不是很难想. 然而考试的时候慌得一批只有心思写暴力233. 下面是几个很有用的性质: c0,1+1≥c1,0≥c0,1c_{0,1 }+1 ≥ c_{1,0} ≥ c_{0,1}c0,1​+1≥c1,0​≥c0,1​,因为$ 10, 01 $是交替出现的. c1,0+c0,0c_{1,0 }+c_{0,0}c1,0​+c0,0​是000出现的次数. c0,1+c1,1+1c_{0,1}+ c_{1,1}+1c0,1​+c1,1​+1 是111 出现的次数. 由于满足条…
传送门 把每一个数aaa质因数分解. 假设a=p1a1∗p2a2∗...∗pkaka=p_1^{a_1}*p_2^{a_2}*...*p_k^{a_k}a=p1a1​​∗p2a2​​∗...∗pkak​​ 然后可以转化成a′=p1a1mod3∗p2a2mod3∗...∗pkakmod3a'=p_1^{a_1mod3}*p_2^{a_2mod3}*...*p_k^{a_kmod3}a′=p1a1​mod3​∗p2a2​mod3​∗...∗pkak​mod3​ 然后可以找到另外一个不含立方因子的bb…
题目+数据:链接:http://pan.baidu.com/s/1gfBg4h1 密码:ho7o 总共得了:130分, 1:100分  2:30分(只会这30分的暴力) 3:0(毫无思路) 虽然不高,但是比较满意,因为把自己会的分数都拿到了. T1:100分 /* T1明显是个数论题. 正确的思路:把n!质因数分解,把所有质因数的指数都取到最大的偶数,它们的乘积便是最终的结果. 有一种很快的方法在Eular筛中可以n!的质因数分解. if(!is_prim[i]) { prim[++prim[0…