【BZOJ-2142】礼物 拓展Lucas定理】的更多相关文章

扩展Lucas定理模板题(貌似这玩意也只能出模板题了吧~~本菜鸡见识鄙薄,有待指正) 原理: https://blog.csdn.net/hqddm1253679098/article/details/82897638 https://blog.csdn.net/clove_unique/article/details/54571216 感觉扩展Lucas定理和Lucas定理的复杂程度差了不止一个档次,用到了一大堆莫名其妙的函数. 另外谁能告诉我把一个很大的组合数对一个非质数取模有什么卵用 #i…
2142: 礼物 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1313  Solved: 541[Submit][Status][Discuss] Description 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E心目中的重要性不同,在小E心中分量越重的人,收到的礼物会越多.小E从商店中购买了n件礼物,打算送给m个人,其中送给第i个人礼物数量为wi.请你帮忙计算出送礼物的方案数(两个方…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2142 没给P的范围,但说 pi ^ ci<=1e5,一看就是扩展lucas. 学习材料:https://blog.csdn.net/clove_unique/article/details/54571216 https://www.cnblogs.com/elpsycongroo/p/7620197.html 于是打(抄)了第一份exlucas的板子.那个把 pi的倍数 和 其余部分 分开…
题目链接 答案就是C(n,m1) * C(n-m1,m2) * C(n-m1-m2,m3)...(mod p) 使用扩展Lucas求解. 一个很简单的优化就是把pi,pi^ki次方存下来,因为每次分解p都是很慢的. 注意最后p不为1要把p再存下来!(质数) COGS 洛谷上的大神写得快到飞起啊QAQ 就这样吧 3.25 Update:预处理阶乘可以很快,别忘longlong.代码见下. //836kb 288ms #include <cmath> #include <cstdio>…
(上不了p站我要死了,侵权度娘背锅) Description 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E 心目中的重要性不同,在小E心中分量越重的人,收到的礼物会越多.小E从商店中购买了n件礼物,打算送给m个人 ,其中送给第i个人礼物数量为wi.请你帮忙计算出送礼物的方案数(两个方案被认为是不同的,当且仅当存在某 个人在这两种方案中收到的礼物不同).由于方案数可能会很大,你只需要输出模P后的结果. Input 输入的第一行包含一个正整数…
拓展Lucas定理解决大组合数取模并且模数为任意数的情况 大概的思路是把模数用唯一分解定理拆开之后然后去做 然后要解决的一个子问题是求模质数的k次方 将分母部分转化成逆元再去做就好了 这里贴一份别人的板子 #include<bits/stdc++.h> using namespace std; + ; typedef long long LL; LL Pow(LL n, LL m, LL mod) { LL ans = ; ) { ) ans = (LL)ans * n % mod; n =…
这道题是求组合数终极版. C(n,m) mod P n>=1e9 m>=1e9 P>=1e9且为合数且piqi<=1e5 拓展lucas定理. 实际上就是一点数论小知识的应用. 这篇文章对于CRT和lucas定理的学习非常不错. #include<bits/stdc++.h> using namespace std; #define ll long long #define FILE "dealing" #define up(i,j,n) for(i…
2142: 礼物 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1294  Solved: 534[Submit][Status][Discuss] Description 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E心目中的重要性不同,在小E心中分量越重的人,收到的礼物会越多.小E从商店中购买了n件礼物,打算送给m个人,其中送给第i个人礼物数量为wi.请你帮忙计算出送礼物的方案数(两个方…
2142: 礼物 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1450  Solved: 593[Submit][Status][Discuss] Description 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E心目中的重要性不同,在小E心中分量越重的人,收到的礼物会越多.小E从商店中购买了n件礼物,打算送给m个人,其中送给第i个人礼物数量为wi.请你帮忙计算出送礼物的方案数(两个方…
题意:n件礼物,送给m个人,每人的礼物数确定,求方案数. 解题关键:由于模数不是质数,所以由唯一分解定理, $\bmod  = p_1^{{k_1}}p_2^{{k_2}}......p_s^{{k_s}}$ 然后,分别求出每个组合数模每个$p_i^{{k_i}}$的值,这里可以用扩展lucas定理求解,(以下其实就是扩展lucas定理的简略证明) 关于$C_n^m\% {p^k}$, $C_n^m = \frac{{n!}}{{m!(n - m)!}}$, 我们以$n=19,p=3,k=2$为…