tf.while_loop】的更多相关文章

tf.while_loop(cond, body, loop_vars, shape_invariants=None, parallel_iterations=10, back_prop=True, swap_memory=False, name=None, maximum_iterations=None, return_same_structure=False) tf.while_loop 可以这样理解: loop = [] while cond(loop): loop = body(loop…
代码(操纵全局变量) xiaojie=1 i=tf.constant(0,dtype=tf.int32) batch_len=tf.constant(10,dtype=tf.int32) loop_cond = lambda a,b: tf.less(a,batch_len) #yy=tf.Print(batch_len,[batch_len],"batch_len:") yy=tf.constant(0) loop_vars=[i,yy] def _recurrence(i,yy):…
命名空间及变量共享 # coding=utf-8 import tensorflow as tf import numpy as np import matplotlib.pyplot as plt; with tf.variable_scope('V1') as scope: a1 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1)) scope.reuse_variables() a3…
代码 i=tf.constant(0,dtype=tf.int32) batch_len=tf.constant(10,dtype=tf.int32) loop_cond = lambda a,b: tf.less(a,batch_len) #yy=tf.Print(batch_len,[batch_len],"batch_len:") yy=tf.constant(0) loop_vars=[i,yy] def _recurrence(i,yy): c=tf.constant(2,d…
计算累加 #!/usr/bin/env python2 # -*- coding: utf-8 -*-"""Created on Mon Jul 24 08:25:41 2017求1+...+5@author: myhaspl@myhaspl.com"""import tensorflow as tfi = tf.constant(0)num_sum=tf.Variable(0)def cond(i,num_sum):    return i &…
写在前面 本文翻译自Tensorflow团队的文章Tensorflow Control Flow Implementation,部分内容加入了笔者自己的理解,如有不妥之处还望各位指教. 目录 概览 控制流核心概念 控制流结构的编译 条件表达式 while循环 实现 分布式条件表达式 分布式while循环 自动微分 概览 本文将会介绍当前在Tensorflow中控制流操作的设计和实现.这是一篇基于原始设计的描述性文档,设计的细节还请参考源代码. 本文将要讲述的内容是: 介绍Tensorflow为了…
https://blog.csdn.net/gubenpeiyuan/article/details/82710163 TensorFlow 调试程序 tfdbg 是 TensorFlow 的专用调试程序.借助该调试程序,您可以在训练和推理期间查看运行中 TensorFlow 图的内部结构和状态,由于 TensorFlow 的计算图模式,使用通用调试程序(如 Python 的 pdb)很难完成调试. 本指南重点介绍 tfdbg 的命令行界面 (CLI).有关如何使用 tfdbg 的图形用户界面…
『PyTorch』第六弹_最小二乘法对比PyTorch和TensorFlow TensorFlow 控制流程操作 TensorFlow 提供了几个操作和类,您可以使用它们来控制操作的执行并向图中添加条件依赖关系. tf.identity 『TensorFlow』流程控制之tf.identity tf.tuple tf.group 创建一个操作,该操作可以对 TensorFlow 的多个操作进行分组,输入需要进行分组的零个或多个张量. tf.no_op tf.count_up_to tf.cond…
安装 TensorFlow 2.0 Alpha 本文仅仅介绍 Windows 的安装方式: pip install tensorflow==2.0.0-alpha0 # cpu 版本 pip install tensorflow==2.0.0-alpha0 # gpu 版本 针对 GPU 版的安装完毕后还需要设置环境变量: SET PATH=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\bin;%PATH% SET PATH=C…
Tensorflow中之前主要用的数据读取方式主要有: 建立placeholder,然后使用feed_dict将数据feed进placeholder进行使用.使用这种方法十分灵活,可以一下子将所有数据读入内存,然后分batch进行feed:也可以建立一个Python的generator,一个batch一个batch的将数据读入,并将其feed进placeholder.这种方法很直观,用起来也比较方便灵活jian,但是这种方法的效率较低,难以满足高速计算的需求. 使用TensorFlow的Queu…
一.RPN锚框信息生成 上文的最后,我们生成了用于计算锚框信息的特征(源代码在inference模式中不进行锚框生成,而是外部生成好feed进网络,training模式下在向前传播时直接生成锚框,不过实际上没什么区别,锚框生成的讲解见『计算机视觉』Mask-RCNN_锚框生成): rpn_feature_maps = [P2, P3, P4, P5, P6] 接下来,我们基于上述特征首先生成锚框的信息,包含每个锚框的前景/背景得分信息及每个锚框的坐标修正信息. 接前文主函数,我们初始化rpn m…
Fork版本项目地址:SSD 一.输入标签生成 在数据预处理之后,图片.类别.真实框格式较为原始,不能够直接作为损失函数的输入标签(ssd向前网络只需要图像就行,这里的处理主要需要满足loss的计算),对于一张图片(三维CHW)我们需要如下格式的数据作为损失函数标签: gclasse:           搜索框对应的真实类别  长度为ssd特征层f的list,每一个元素是一个Tensor,shape为:该层中心点行数×列数×每个中心点包含搜索框数目 gscores:           搜索框…
Kaggle网站流量预测任务第一名解决方案:从模型到代码详解时序预测 2017年12月13日 17:39:11 机器之心V 阅读数:5931   近日,Artur Suilin 等人发布了 Kaggle 网站流量时序预测竞赛第一名的详细解决方案.他们不仅公开了所有的实现代码,同时还详细解释了实现的模型与经验.机器之心简要介绍了他们所实现的模型与经验,更详细的代码请查看 GitHub 项目. GitHub 项目地址:https://github.com/Arturus/kaggle-web-tra…
https://mp.weixin.qq.com/s/JwRXBNmXBaQM2GK6BDRqMw 选自GitHub 作者:Artur Suilin 机器之心编译 参与:蒋思源.路雪.黄小天 近日,Artur Suilin 等人发布了 Kaggle 网站流量时序预测竞赛第一名的详细解决方案.他们不仅公开了所有的实现代码,同时还详细解释了实现的模型与经验.机器之心简要介绍了他们所实现的模型与经验,更详细的代码请查看 GitHub 项目. GitHub 项目地址:https://github.com…
Effective TensorFlow Table of Contents TensorFlow Basics Understanding static and dynamic shapes Scopes and when to use them Broadcasting the good and the ugly Feeding data to TensorFlow Take advantage of the overloaded operators Understanding order…
示例代码 ii=tf.constant(0,dtype=tf.int32) loop__cond=lambda a: tf.less(a,sentence_length) loop__vars=[ii] def __recurrence(ii): #前面的0到sentence_length-1的下标,存储的就是最原始的词向量,但是我们也要将其转变为Tensor new_column_tensor=tf.expand_dims(sentence_embeddings[:,ii],1) self.n…
调用static_rnn实际上是生成了rnn按时间序列展开之后的图.打开tensorboard你会看到sequence_length个rnn_cell stack在一起,只不过这些cell是share weight的.因此,sequence_length就和图的拓扑结构绑定在了一起,因此也就限制了每个batch的sequence_length必须是一致. 调用dynamic_rnn不会将rnn展开,而是利用tf.while_loop这个api,通过Enter, Switch, Merge, Lo…
Kaggle比赛冠军经验分享:如何用 RNN 预测维基百科网络流量 from:https://www.leiphone.com/news/201712/zbX22Ye5wD6CiwCJ.html 导语:来自莫斯科的 Arthur Suilin 在比赛中夺冠并在 github 上分享了他的模型 雷锋网 AI 科技评论按:最近在 Kaggle 上有一场关于网络流量预测的比赛落下帷幕,作为领域里最具挑战性的问题之一,这场比赛得到了广泛关注.比赛的目标是预测 14 万多篇维基百科的未来网络流量,分两个阶…
对于match-lstm,将hi文本与输出的match-lstm(由si,hi,qi)组合重新输入到LSTM网络中,以端对端的操作理念. 参考的博客:https://blog.csdn.net/laddie132/article/details/79159895  #MATCH-LSTM原理 https://blog.csdn.net/jdbc/article/details/80755576          # 将SQUAD数据集转换为id https://blog.csdn.net/xbi…
import tensorflow as tf import numpy as np B=3 D=4 T=5 tf.reset_default_graph() xs=tf.placeholder(shape=[T,B,D],dtype=tf.float32) with tf.variable_scope('rnn'): GRUcell = tf.nn.rnn_cell.GRUCell(num_units=D) cell = tf.nn.rnn_cell.MultiRNNCell([GRUcell…
#-*-coding:utf8-*- __author = "buyizhiyou" __date = "2017-11-21" import random, time, os, decoder from PIL import Image import numpy as np import tensorflow as tf import pdb import decoder import random ''' 在汉字ocr项目中,利用基于attention的enco…
参考书 <TensorFlow:实战Google深度学习框架>(第2版) 我只能说这本书太烂了,看完这本书中关于自然语言处理的内容,代码全部敲了一遍,感觉学的很绝望,代码也运行不了. 具体原因,我也写过一篇博客diss过这本书.可是既然学了,就要好好学呀.为了搞懂自然语言处理,我毅然决然的学习了网上的各位小伙伴的博客.这里是我学习的简要过程,和代码,以及运行结果.大家共勉. 参考链接: https://blog.csdn.net/qq_33431368/article/details/8578…
Linear and Logistic Regression in TensorFlow Graphs and sessions TF Ops: constants, variables, functions TensorBoard Lazy loading Linear Regression: Predict life expectancy from birth rate Let's start with a simple linear regression example. I hope y…
single shot multibox detectior tensorflow 代码 一.SSD重要参数设置 在ssd_vgg_300.py文件中初始化重要的网络参数,主要有用于生成默认框的特征层,每层默认框的默认尺寸以及长宽比例: # Copyright 2016 Paul Balanca. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you…
tensortlfow数据读取有三种方式 placehold feed_dict:从内存中读取数据,占位符填充数据 queue队列:从硬盘读取数据 Dataset:同时支持内存和硬盘读取数据 placehold-feed_dict 先用placehold 占位数据,在Graph中读取数据,数据直接内嵌到Graph中,然后当Graph传入Session是,用feed_dict喂补数据.当数据量比较大的时候,Graph的传输会遇到效率底下问题,特别是数据转换. import tensorflow a…
前言 首先,如果你现在已经很熟悉tf.data+estimator了,可以把文章x掉了╮( ̄▽ ̄””)╭ 但是!如果现在还是在进行session.run(..)的话!尤其是苦恼于GPU显存都塞满了利用率却上不去的童鞋,这篇文章或许可以给你打开新世界的大门噢( ̄∇ ̄) 如果发现经过一系列改良后训练效率大大提高了,记得回来给小夕发小红包( ̄∇ ̄) 不过,这并不是一篇怒贴一堆代码,言(三)简(言)意(两)赅(语)就结束的CSDN文风的文章...所以伸手党们也可以X掉了╮( ̄▽ ̄””)╭ 缘起 很早很早…
RefineDet 一.相关背景 中科院自动化所最新成果,CVPR 2018 <Single-Shot Refinement Neural Network for Object Detection> 在VOC2007测试集上,图像输入512*512时,map为81.8%,速度为24fps. 论文链接:https://arxiv.org/abs/1711.06897 二.主要思想 1.单阶段框架用于目标检测,由两个相互连接模块组成:ARM和ODM: 2.设计了TCB来传输ARM特征,来处理更具挑…
Effective TensorFlow 2.0 为使TensorFLow用户更高效,TensorFlow 2.0中进行了多出更改.TensorFlow 2.0删除了篇冗余API,使API更加一致(统一RNNs, 统一优化器),并通过Eager execution更好地与Python集成. 许多RFCs已经解释了TensorFlow 2.0带来的变化.本指南介绍了TensorFlow 2.0应该怎么进行开发.这假设您已对TensorFlow 1.x有一定了解. A brief summary o…
import sys import codecs import tensorflow as tf # 1.参数设置. # 读取checkpoint的路径.9000表示是训练程序在第9000步保存的checkpoint. CHECKPOINT_PATH = "F:\\temp\\attention_ckpt-9000" # 模型参数.必须与训练时的模型参数保持一致. HIDDEN_SIZE = 1024 # LSTM的隐藏层规模. DECODER_LAYERS = 2 # 解码器中LST…
import sys import codecs import tensorflow as tf # 1.参数设置. # 读取checkpoint的路径.9000表示是训练程序在第9000步保存的checkpoint. CHECKPOINT_PATH = "F:\\temp\\seq2seq_ckpt-9000" # 模型参数.必须与训练时的模型参数保持一致. HIDDEN_SIZE = 1024 # LSTM的隐藏层规模. NUM_LAYERS = 2 # 深层循环神经网络中LSTM…