CS229笔记:生成学习算法】的更多相关文章

在线性回归.逻辑回归.softmax回归中,学习的结果是\(p(y|x;\theta)\),也就是给定\(x\)的条件下,\(y\)的条件概率分布,给定一个新的输入\(x\),我们求出不同输出的概率,我们称这一类学习算法为判别学习算法​(discriminative learning algorithm):这一节,我们介绍另一类学习算法:生成学习算法(generative learning algorithm),在生成学习算法中,我们对\(p(x|y)\)和\(p(y)\)建模,也就是说,我们求…
课程视频地址:http://open.163.com/special/opencourse/machinelearning.html 课程主页:http://cs229.stanford.edu/ 更具体的资料链接:https://www.jianshu.com/p/0a6ef31ff77a 笔记参考自中文翻译版:https://github.com/Kivy-CN/Stanford-CS-229-CN 这一讲介绍了高斯判别分析以及朴素贝叶斯算法. Part IV 生成学习算法 到目前为止,我们…
转载请注明:http://blog.csdn.net/xinzhangyanxiang/article/details/9285001 该系列笔记1-5pdf下载请猛击这里. 本篇博客为斯坦福ML公开课第五个视频的笔记,主要内容包括生成学习算法(generate learning algorithm).高斯判别分析(Gaussian DiscriminantAnalysis,GDA).朴素贝叶斯(Navie Bayes).拉普拉斯平滑(Laplace Smoothing).…
参考: cs229讲义 机器学习(一):生成学习算法Generative Learning algorithms:http://www.cnblogs.com/zjgtan/archive/2013/06/08/3127490.html 首先,简单比较一下前几节课讲的判别学习算法(Discriminative Learning Algorithm)和本节课讲的生成学习算法(Generative Learning Algorithm)的区别. eg:问题:Consider a classificat…
(一)生成学习算法 在线性回归和Logistic回归这种类型的学习算法中我们探讨的模型都是p(y|x;θ),即给定x的情况探讨y的条件概率分布.如二分类问题,不管是感知器算法还是逻辑回归算法,都是在解空间中寻找一条直线从而把两种类别的样例分开,对于新的样例,只要判断在直线的哪一侧即可:这种直接对问题求解的方法可以称为判别学习方法.   而生成学习算法则是对两个类别分别进行建模,用新的样例去匹配两个模板,匹配度较高的作为新样例的类别,比如分辨大象(y=1)和狗(y=0),首先,观察大象,然后建立一…
一.引言 前面我们谈论到的算法都是在给定\(x\)的情况下直接对\(p(y|x;\theta)\)进行建模.例如,逻辑回归利用\(h_\theta(x)=g(\theta^T x)\)对\(p(y|x;\theta)\)建模,这类算法称作判别学习算法. 考虑这样一个分类问题,我们根据一些特征来区别动物是大象\((y=1)\)还是狗\((y=0)\).给定了这样一个训练集,逻辑回归或感知算法要做的就是去找到一个决策边界,将大象和狗的样本分开来.可以换个思路,首先根据大象的特征来学习出一个大象的模型…
在前面几课里的学习算法的思路都是给定数据集以后.确定基于此数据集的最佳如果H函数,通过学习算法确定最佳如果H的各个參数,然后通过最佳如果函数H得出新的数据集的结果.在这一课里介绍了一种新的思路,它的核心思想是直接计算各种如果的最高概率,然后拟合各个如果的最高概率參数,并利用拟合得到的如果概率,计算出新的数据集的概率,选取概率最高的如果直接得出分类类别. 整个生成学习算法的精髓在于条件概率的使用.在二元分类里,也能够称为分别算法.在给定的数据集里确定p(y) 和p(x|y),然后根据贝叶斯定理.得…
转载请标明出处:https://www.cnblogs.com/tiaozistudy/p/dbscan_algorithm.html DBSCAN(Density-Based Spatial Clustering of Applications with Noise)聚类算法,是一种基于高密度连通区域的.基于密度的聚类算法,能够将具有足够高密度的区域划分为簇(Cluster),并在具有噪声的数据中发现任意形状的簇.DBSCAN算法通过距离定义出一个密度函数,计算出每个样本附近的密度,从而根据每…
目录 论文信息: Finn C, Abbeel P, Levine S. Model-agnostic meta-learning for fast adaptation of deep networks[C]//Proceedings of the 34th International Conference on Machine Learning-Volume 70. JMLR. org, 2017: 1126-1135. 一.摘要 元学习的目标是在各种学习任务上训练一个模型,这样它就可以使用…
Sarsa算法 是 TD算法的一种,之前没有严谨推导过 TD 算法,这一篇就来从数学的角度推导一下 Sarsa 算法.注意,这部分属于 TD算法的延申. 7. Sarsa算法 7.1 推导 TD target 推导:Derive. 这一部分就是Sarsa 最重要的内核. 折扣回报:$U_t=R_t+\gamma R_{t+1}+\gamma^2 R_{t+2}+\gamma^3 R_{t+3}+\cdots \ \quad={R_t} + \gamma \cdot U_{t+1} $ 即 将\(…