PCA算法学习(Matlab实现)】的更多相关文章

PCA(主成分分析)算法,主要用于数据降维,保留了数据集中对方差贡献最大的若干个特征来达到简化数据集的目的. 实现数据降维的步骤: 1.将原始数据中的每一个样本用向量表示,把所有样本组合起来构成一个矩阵,通常需对样本矩阵进行处理,得到中性化样本矩阵 2.求样本矩阵的协方差矩阵 3.求协方差矩阵的特征值和特征向量 4.将求出的特征向量按照特征值的大小进行组合形成一个映射矩阵.并根据指定的PCA保留的特征个数取出映射矩阵的前n行或者前n列作为最终的映射矩阵. 5.用映射矩阵对数据进行映射,达到数据降…
文章来源:http://blog.csdn.net/xizhibei ============================= PCA,也就是说,PrincipalComponents Analysis,主成份分析,是个非常优秀的算法.依照书上的说法: 寻找最小均方意义下,最能代表原始数据的投影方法 然后自己的说法就是:主要用于特征的降维 另外.这个算法也有一个经典的应用:人脸识别.这里略微扯一下,无非是把处理好的人脸图片的每一行凑一起作为特征向量.然后用PAC算法降维搞定之. PCA的主要思…
前言: PCA是大家经常用来减少数据集的维数,同时保留数据集中对方差贡献最大的特征来达到简化数据集的目的.本文通过使用PCA来提取人脸中的特征脸这个例子,来熟悉下在oepncv中怎样使用PCA这个类. 开发环境:ubuntu12.04+Qt4.8.2+QtCreator2.5.1+opencv2.4.2 PCA数学理论: 关于PCA的理论,资料很多,公式也一大把,本人功底有限,理论方面这里就不列出了.下面主要从应用的角度大概来讲讲具体怎么实现数据集的降维. 把原始数据中每个样本用一个向量表示,然…
PCA算法的基本原理可以参考:http://www.cnblogs.com/mikewolf2002/p/3429711.html     对一副宽p.高q的二维灰度图,要完整表示该图像,需要m = p*q维的向量空间,比如100*100的灰度图像,它的向量空间为100*100=10000.下图是一个3*3的灰度图和表示它的向量表示: 该向量为行向量,共9维,用变量表示就是[v0, v1, v2, v3, v4, v5, v6, v7, v8],其中v0...v8,的范围都是0-255.    …
我接触princomp函数,主要是因为实验室的项目需要,所以我一接触的时候就希望快点学会怎么用. 项目中需要利用PCA算法对大量数据进行降维. 简介:主成分分析 ( Principal Component Analysis , PCA )或者主元分析.是一种掌握事物主要矛盾的统计分析方法,它可以从多元事物中解析出主要影响因素,揭示事物的本质,简化复杂的问题.计算主成分的目的是将高维数据投影到较低维空间. 对于银行后台存储的大量数据进行分析,并不一件易事,由于每个人的信息属性众多,辨别起来颇为费力…
MATLAB基础知识 l  Imread:  读取图片信息: l  axis:轴缩放:axis([xmin xmax ymin ymax zmin zmax cmin cmax]) 设置 x.y 和 z 轴范围以及颜色缩放范围(请参阅 caxis).v = axis 返回包含 x.y 和 z 轴缩放因子的行矢量.v 具有 4 或 6 个分量,具体分别取决于当前坐标轴是二维还是三维.返回值是当前坐标轴的 XLim.Ylim 和 ZLim 属性.   基于 x.y 和 z 数据的最小值和最大值,ax…
作者:桂. 时间:2017-02-26  19:54:26 链接:http://www.cnblogs.com/xingshansi/articles/6445625.html 声明:转载请注明出处,谢谢. 前言 本文为模式识别系列第一篇,主要介绍主成分分析算法(Principal Component Analysis,PCA)的理论,并附上相关代码.全文主要分六个部分展开: 1)简单示例.通过简单的例子,引出PCA算法: 2)理论推导.主要介绍PCA算法的理论推导以及对应的数学含义: 3)算法…
这两天学习了吴恩达老师机器学习中的主成分分析法(Principal Component Analysis, PCA),PCA是一种常用的降维方法.这里对PCA算法做一个小笔记,并利用python完成对应的练习(ps:最近公式有点多,开始没找到怎么敲公式,前面几篇都是截的图^_^,后面问了度娘,原来是支持latex的).代码和数据见github 一.PCA基本思路 将数据从原来的坐标系转换到新的坐标系,新坐标系的选择由数据本身决定.第一个新坐标轴选择的是原始数据中方差最大的方向,第二个新坐标轴选择…
OTSU算法学习   OTSU公式证明 1 otsu的公式如下,如果当前阈值为t, w0 前景点所占比例 w1 = 1- w0 背景点所占比例 u0 = 前景灰度均值 u1 = 背景灰度均值 u = w0*u0 + w1*u1  全局灰度均值 g = w0(u0-u)*(u0-u) + w1(u1-u)*(u1-u) = w0*(1 – w0)*(u0 - u1)* (u0 - u1) 目标函数为g, g越大,t就是越好的阈值.为什么采用这个函数作为判别依据,直观是这个函数反映了前景和背景的差值…
ISODATA聚类算法的matlab程序 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 参考:Kmeans及ISODATA算法的matlab实现 算法简介:聚类算法:ISODATA算法 数据见:MATLAB实例:PCA降维中的iris数据集,保存为:iris.data,最后一列是类标签. demo_isodata.m clear clc data_load=dlmread('iris.data'); [~,dim]=size(data_load)…