给出集合 [1,2,3,-,n],其所有元素共有 n! 种排列. 按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下: "123" "132" "213" "231" "312" "321" 给定 n 和 k,返回第 k 个排列. 说明: 给定 n 的范围是 [1, 9]. 给定 k 的范围是[1,  n!]. 示例 1: 输入: n = 3, k = 3 输出:…
The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the permutations in order, We get the following sequence (ie, for n = 3): 1 "123" 2 "132" 3 "213" 4 "231" 5 "312&qu…
Implement next permutation, which rearranges numbers into the lexicographically next greater permutation of numbers. If such arrangement is not possible, it must rearrange it as the lowest possible order (ie, sorted in ascending order). The replaceme…
The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the permutations in order,We get the following sequence (ie, for n = 3): "123" "132" "213" "231" "312" "3…
The set [1,2,3,...,n] contains a total of n! unique permutations. By listing and labeling all of the permutations in order, we get the following sequence for n = 3: "123" "132" "213" "231" "312" "321&…
The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the permutations in order,We get the following sequence (ie, for n = 3): "123" "132" "213" "231" "312" "3…
题目描述 给出集合 [1,2,3,…,n],其所有元素共有 n! 种排列. 按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下: "123" "132" "213" "231" "312" "321" 给定 n 和 k,返回第 k 个排列. 说明: 给定 n 的范围是 [1, 9]. 给定 k 的范围是[1,  n!]. 示例 1: 输入: n = 3, k =…
/* n个数有n!个排列,第k个排列,是以第(k-1)/(n-1)!个数开头的集合中第(k-1)%(n-1)!个数 */ public String getPermutation(int n, int k) { k--; List<Integer> list = new ArrayList<>(); StringBuilder res = new StringBuilder(); int count =1; //以每个数字开头的集合有多少中排列 for (int i = 2; i…
The set [1,2,3,...,n] contains a total of n! unique permutations.By listing and labeling all of the permutations in order, we get the following sequence for n = 3: "123" "132" "213" "231" "312" "321&q…
The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the permutations in order, We get the following sequence (ie, for n = 3): "123" "132" "213" "231" "312" "…
LeetCode:60. Permutation Sequence,n全排列的第k个子列 : 题目: LeetCode:60. Permutation Sequence 描述: The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the permutations in order, We get the following sequence (ie, for…
给出集合 [1,2,3,…,n],其所有元素共有 n! 种排列.按大小顺序列出所有排列情况,并一一标记,可得到如下序列 (例如,  n = 3):   1."123"   2. "132"   3. "213"   4. "231"   5. "312"   6. "321"给定 n 和 k,返回第 k 个排列序列.注意:n 介于1到9之间(包括9).详见:https://leetcod…
解法一:用next_permutation()函数,要求第k个排列,就从"123...n"开始调用 k - 1 次 next_permutation()函数即可. class Solution { public: string getPermutation(int n, int k) { string res; for(int i = 1; i <= n; ++i) { res += to_string(i); } for(int i = 0; i < k - 1; ++i…
The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the permutations in order,We get the following sequence (ie, for n = 3): "123" "132" "213" "231" "312" "3…
The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the permutations in order,We get the following sequence (ie, for n = 3): "123" "132" "213" "231" "312" "3…
题目: The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the permutations in order, We get the following sequence (ie, for n = 3): "123" "132" "213" "231" "312" &q…
一.开篇 既上一篇<交换法生成全排列及其应用> 后,这里讲的是基于全排列 (Permutation)本身的一些问题,包括:求下一个全排列(Next Permutation):求指定位置的全排列(Permutation Sequence):给出一个全排列,求其所在位置. 二.例题 1. 求下一个全排列,Next permuation Implement next permutation, which rearranges numbers into the lexicographically ne…
题目是这样的: The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the permutations in order,We get the following sequence (ie, for n = 3): "123" "132" "213" "231" "312"…
leetcode 上的Permutation Sequence 下面是可执行代码 1 2 3 1 3 2 2 1 3 2 3 1 3 1 2 3 2 1 以1 开头 123,132,共2!个数 2 开头  213,231 3开头  312, 321 如果给你弟k个,能求出它位于以谁开头不?只要求出它位于第几个2!个,总体思路就是这个 import java.util.ArrayList; public class Main { //求N的阶乘 public static int fic(int…
Permutation Sequence The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the permutations in order,We get the following sequence (ie, for n = 3): "123" "132" "213" "231" &q…
Permutation Sequence The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the permutations in order, We get the following sequence (ie, for n = 3): "123" "132" "213" "231" &…
题目: The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the permutations in order, We get the following sequence (ie, for n = 3): "123" "132" "213" "231" "312" &q…
[题目描述] Given n and k, return the k-th permutation sequence. Notice:n will be between 1 and 9 inclusive. 给定n和k,求123..n组成的排列中的第k个排列. [注]1 ≤ n ≤ 9 [题目链接] www.lintcode.com/en/problem/permutation-sequence/ [题目解析] 这道题给了我们n还有k,在数列 1,2,3,... , n构建的全排列中,返回第k个…
一天一道LeetCode系列 (一)题目 The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the permutations in order, We get the following sequence (ie, for n = 3): 1:"123" 2:"132"  3 : "213" 4 :&quo…
LeetCode 31 Next Permutation / 60 Permutation Sequence [Permutation] <c++> LeetCode 31 Next Permutation 给出一个序列,求其下一个排列 STL中有std::next_permutation这个方法可以直接拿来用 也可以写一个实现程序: 从右往左遍历序列,找到第一个nums[i-1]<num[i]的位置,记p = i-1. 如果第一步没有找到,说明整个序列满足单调递减,也就是最大的排列,那…
原题地址:https://oj.leetcode.com/submissions/detail/5341904/ 题意: The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the permutations in order,We get the following sequence (ie, for n = 3): "123" "132&…
Permutation Sequence https://oj.leetcode.com/problems/permutation-sequence/ The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the permutations in order, We get the following sequence (ie, for n = 3): "123&…
题目 The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the permutations in order, We get the following sequence (ie, for n = 3): "123" "132" "213" "231" "312" &qu…
题目: The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the permutations in order, We get the following sequence (ie, for n = 3): "123" "132" "213" "231" "312" &q…
The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the permutations in order,We get the following sequence (ie, for n = 3): "123" "132" "213" "231" "312" "3…