CBAM: Convolutional Block Attention Module 2018-09-14 21:52:42 Paper:http://openaccess.thecvf.com/content_ECCV_2018/papers/Sanghyun_Woo_Convolutional_Block_Attention_ECCV_2018_paper.pdf GitHub:https://github.com/luuuyi/CBAM.PyTorch 本文提出 channel atten…
CBAM: Convolutional Block Attention Module 简介 本文利用attention机制,使得针对网络有了更好的特征表示,这种结构通过支路学习到通道间关系的权重和像素间关系的权重,然后乘回到原特征图,使得特征图可以更好的表示. Convolutional Block Attention Module 这里的结构有点类似与SENet里的支路结构. 对于Channel attention module,先将原feature map分别做global avg pool…
1. 摘要 作者提出了一个简单但有效的注意力模块 CBAM,给定一个中间特征图,我们沿着空间和通道两个维度依次推断出注意力权重,然后与原特征图相乘来对特征进行自适应调整. 由于 CBAM 是一个轻量级的通用模块,它可以无缝地集成到任何 CNN 架构中,额外开销忽略不计,并且可以与基本 CNN 一起进行端到端的训练. 在不同的分类和检测数据集上,将 CBAM 集成到不同的模型中后,模型的表现都有了一致的提升,展示了其广泛的可应用性. 2. 介绍 为了提升 CNN 模型的表现,最近的研究主要集中在三…
转自知乎 这货就是基于 SE-Net [5]中的 Squeeze-and-Excitation module 来进行进一步拓展 具体来说,文中把 channel-wise attention 看成是教网络 Look 'what’:而spatial attention 看成是教网络 Look 'where',所以它比 SE Module 的主要优势就多了后者 ------------------------------------ 我们先看看 SE-module: SE-module 流程: 将输…
1. 摘要 注意力机制是深度神经网络的一个设计趋势,其在各种计算机视觉任务中都表现突出.但是,应用到图像超分辨领域的注意力模型大都没有考虑超分辨和其它高层计算机视觉问题的天然不同. 作者提出了一个新的注意力模型,由针对 SR 问题优化的新的通道和空间注意力机制以及将这两者结合起来的融合机制组成.基于此,作者设计了一个残差注意力模块(RAM)以及用来超分辨的 SRRAM 网络. 2. 介绍 通常,大多数基于 CNN 来进行图像超分辨的方法在内部同等地处理所有类型的信息,这可能无法有效地区分内容的详…
注意力机制之Attention Augmented Convolutional Networks 原始链接:https://www.yuque.com/lart/papers/aaconv 核心内容 We propose to augment convolutional operators with this self-attention mechanism by concatenating convolutional feature maps with a set of feature map…
CBAM: Convolutional Block Attention Module 论文地址:https://arxiv.org/abs/1807.06521   简介:我们提出了卷积块注意模块 (CBAM), 一个简单而有效的注意模块的前馈卷积神经网络.给出了一个中间特征映射, 我们的模块按照两个独立的维度.通道和空间顺序推断出注意力映射, 然后将注意力映射相乘为自适应特征细化的输入特征映射.因为 CBAM 是一个轻量级和通用的模块, 它可以无缝地集成到任何 CNN 架构只增加微不足道的间接…
CNN综述文章 的翻译 [2019 CVPR] A Survey of the Recent Architectures of Deep Convolutional Neural Networks 翻译 综述深度卷积神经网络架构:从基本组件到结构创新 目录 摘要    1.引言    2.CNN基本组件        2.1 卷积层        2.2 池化层        2.3 激活函数        2.4 批次归一化        2.5 Dropout        2.6 全连接层…
SPP:ASPP:将pooling 改为了 空洞卷积RFB:不同大小的卷积核和空洞卷积进行组合,认为大的卷积应该有更大的感受野. CBAM:空间和通道的注意力机制 SPP: Spatial Pyramid Pooling Layer  ASPP: Atrous Spatial Pyramid Pooling  RFB:Receptive Field Block https://blog.csdn.net/u014380165/article/details/81556769 CBAM:Convo…
论文地址:单耳语音增强的时频注意 引用格式:Zhang Q, Song Q, Ni Z, et al. Time-Frequency Attention for Monaural Speech Enhancement[C]//ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2022: 7852-7856. 摘要 大多数语音增强研究通常…