【题解】NOIP2017逛公园(DP)】的更多相关文章

[题解]NOIP2017逛公园(DP) 第一次交挂了27分...我是不是必将惨败了... 考虑这样一种做法,设\(d_i\)表示从该节点到n​节点的最短路径,\(dp(i,k)\)表示从\(i\)节点到\(n\)多走至多\(k\)距离的方案数.转移相当于枚举走哪条边,状态的变化是如果走这条边会比最短路多多少. 转移方程 \[ dp(i,k) =\sum_{(i,u,w)\in E} dp(u,k-(w-(d_i-d_u)) \] 直接用dfs实现转移(记得判环)即可. ... ... ... 但…
\(Des\) 给定一个有向图,起点为\(1\),终点为\(n\),求和最短路相差不超过\(k\)的路径数量.有\(0\)边.如果有无数条,则输出\(-1\). \(n\leq 10^5,k\leq 50\) \(Sol\) 首先,有无数条边的情况一定是在与最短路相差不超过\(k\)的一条路上有\(0\)环. 先不考虑\(0\)边和\(0\)环,\(get\ 70pts\)做法:先跑一个最短路,\(dis[i]\)表示从\(1\)到\(i\)的最短路径.记\(f[u][k]\)表示从\(1\)到…
[NOIP2017] 逛公园 题目大意: 给定一张图,询问长度 不超过1到n的最短路长度加k 的1到n的路径 有多少条. 数据范围: 点数\(n \le 10^5\) ,边数\(m \le 2*10^5\) 题目解法 两个月后再看也不是太难,自己就能独立思考出来. 首先是判-1的问题,显然能产生-1的只有0环. 所以把0环都找出来, 然后检查一下\(dis[\)\(1\),环\(]\) + \(dis[\)环,\(n]\) 是否小于等于 \(dis[1,n]+K\)即可. 如果不是无限路径的话,…
考试的时候灵光一闪,瞬间推出DP方程,但是不知道怎么判-1,然后?然后就炸了. 后来发现,我只要把拓扑和DP分开,中间加一个判断,就AC了,可惜. 看这道题,我们首先来想有哪些情况是-1:只要有零环在满足题目要求的路径上,那么这条路径就可以不停地走,于是就-1了. 如何判有没有零环呢? 机械化地两遍不同方向的SPFA,就知道某个点在不在最短路上,以此建一个最短路图,在最短路图上找零环.于是就拓扑啦.稍加判断就解决了整个题目最关键的-1. 接下来就是DP了,设f[i][j]表示走到i点,走过路程已…
题目描述 策策同学特别喜欢逛公园.公园可以看成一张NNN个点MMM条边构成的有向图,且没有 自环和重边.其中1号点是公园的入口,NNN号点是公园的出口,每条边有一个非负权值, 代表策策经过这条边所要花的时间. 策策每天都会去逛公园,他总是从1号点进去,从NNN号点出来. 策策喜欢新鲜的事物,它不希望有两天逛公园的路线完全一样,同时策策还是一个 特别热爱学习的好孩子,它不希望每天在逛公园这件事上花费太多的时间.如果1号点 到NNN号点的最短路长为ddd,那么策策只会喜欢长度不超过d+Kd + Kd…
策策同学特别喜欢逛公园.公园可以看成一张N个点M条边构成的有向图,且没有 自环和重边.其中1号点是公园的入口,N号点是公园的出口,每条边有一个非负权值, 代表策策经过这条边所要花的时间. 策策每天都会去逛公园,他总是从1号点进去,从N号点出来. 策策喜欢新鲜的事物,它不希望有两天逛公园的路线完全一样,同时策策还是一个 特别热爱学习的好孩子,它不希望每天在逛公园这件事上花费太多的时间.如果1号点 到N号点的最短路长为d,那么策策只会喜欢长度不超过d+K的路线. 策策同学想知道总共有多少条满足条件的…
我连D1T3都不会我联赛完蛋了 题目描述 策策同学特别喜欢逛公园.公园可以看成一张 N 个点 M 条边构成的有向图,且没有 自环和重边.其中1号点是公园的入口, N 号点是公园的出口,每条边有一个非负权值, 代表策策经过这条边所要花的时间. 策策每天都会去逛公园,他总是从1号点进去,从 N 号点出来. 策策喜欢新鲜的事物,它不希望有两天逛公园的路线完全一样,同时策策还是一个 特别热爱学习的好孩子,它不希望每天在逛公园这件事上花费太多的时间.如果1号点 到 N 号点的最短路长为 d ,那么策策只会…
P3953 逛公园 题目描述 策策同学特别喜欢逛公园.公园可以看成一张NN个点MM条边构成的有向图,且没有 自环和重边.其中1号点是公园的入口,NN号点是公园的出口,每条边有一个非负权值, 代表策策经过这条边所要花的时间. 策策每天都会去逛公园,他总是从1号点进去,从NN号点出来. 策策喜欢新鲜的事物,它不希望有两天逛公园的路线完全一样,同时策策还是一个 特别热爱学习的好孩子,它不希望每天在逛公园这件事上花费太多的时间.如果1号点 到NN号点的最短路长为dd,那么策策只会喜欢长度不超过d + K…
我很不想说 在我的AC代码上我打了表,但实在没有办法了.莫名的8,9个点RE.然而即便是打表...也花了我很久. 这大概是NOIP2017最难的题了,为了让不懂的人更容易理解,这篇题解会比较详细 我的做法是DP,在程序中写的是记忆化搜索,下面我着重讲一下状态转移方程和程序中的一些小细节 SPFA 首先对于每组数据,SPFA直接算出dist[i],表示从节点i到节点n的最短距离.是的没有看错,是到节点n的最短距离,至于为什么呢?我在下面会很详细地讲解.但我们先得完成这个SPFA,很容易,对于题目中…
题目描述 给出一张 $n$ 个点 $m$ 条边的有向图,边权为非负整数.求满足路径长度小于等于 $1$ 到 $n$ 最短路 $+k$ 的 $1$ 到 $n$ 的路径条数模 $p$ ,如果有无数条则输出 $-1$ . 输入 第一行包含一个整数 $T$ , 代表数据组数. 接下来 $T$ 组数据,对于每组数据: 第一行包含四个整数 $N,M,K,P$ ,每两个整数之间用一个空格隔开. 接下来 $M$ 行,每行三个整数 $a_i,b_i,c_i$ ,代表编号为 $a_i,b_i$ 的点之间有一条权值为…