Ignite-Spark】的更多相关文章

Ignite spark 踩坑记录 简述 ignite访问数据有两种模式: Thin Jdbc模式: Jdbc 模式和Ignite client模式: shell客户端输出问题,不能输出全列: 针对上述三个问题,我们一一说明一下 详述 Thin Jdbc 瘦客户端的模式是官网介绍的模式,这种模式类似关系型数据库jdbc的访问模式,有两个参数 ignite.jdbc.distributedJoins 启用分布式join的开关 ignite.jdbc.enforceJoinOrder 在查询中强制表…
参考文章:https://apacheignite-fs.readme.io/docs/installation-deployment Spark application deployment model allows dynamic jar distribution during application start. This model, however, has some drawbacks: Spark dynamic class loader does not implement ge…
参考:https://www.itcodemonkey.com/article/9613.html gnite 和 Spark,如果笼统归类,都可以归于内存计算平台,然而两者功能上虽然有交集,并且 Ignite 也会对 Spark 进行支持,但是不管是从定位上,还是从功能上来说,它们差别巨大,适用领域有显著的区别.Ignite 和 Spark 都为 Apache 的顶级开源项目,遵循 Apache 2.0 开源协议,经过多年的发展,二者都已经脱离了单一的技术组件或者框架的范畴,向着多元化的生态圈…
下面简要地回顾一下在第一篇文章中所谈到的内容. Ignite是一个分布式的内存数据库.缓存和处理平台,为事务型.分析型和流式负载而设计,在保证扩展性的前提下提供了内存级的性能. Spark是一个流式数据和计算引擎,通常从HDFS或者其他存储中获取数据,一直以来,他都倾向于OLAP型业务,并且聚焦于MapReduce类型负载. 因此,这两种技术是可以互补的. 将Ignite与Spark整合 整合这两种技术会为Spark用户带来若干明显的好处: 通过避免大量的数据移动,获得真正可扩展的内存级性能:…
Apache Ignite初步认识 今年4月开始倒腾openfire,过程中经历了许多,更学到了许多.特别是在集群方面有了很多的认识,真正开始认识到集群的概念及应用方法. 在openfire中使用的集群解决方案是代理+分布式内存.所谓代理便是通过一个入口转发请求到多个服务实例.而分布式内存就是解决服务实例间数据共享问题.通过这两步就可以搭建出一套水平扩展的集群系统. openfire使用的分布式内存计算框架是hazelcast,并不了解它,大概只知道它是分布式网格内存计算框架.听许多openfi…
1.一个Ignite节点可以从命令行启动,可以用默认的配置也可以传递一个配置文件.可以启动很多很多的节点然后他们会自动地发现对方. 2.Ignite只需要一个ignite-core强依赖,通常你还需要添加ignite-spring,来做基于spring的XML配置,还有ignite-indexing,来做SQL查询. 3.由于Ignite的零部署特性,当从IDE运行上面的程序时,远程节点没有经过显示的部署,就获得了计算作业. 4.导入独立模块. ignite-spring:基于Spring的配置…
1.概述 Apache Ignite和Apache Arrow很类似,属于大数据范畴中的内存分布式管理系统.在<Apache Arrow 内存数据>中介绍了Arrow的相关内容,它统一了大数据领域各个生态系统的数据格式,避免了序列化和反序列化所带来的资源开销(能够节省80%左右的CPU资源).今天来给大家剖析下Apache Ignite的相关内容. 2.内容 Apache Ignite是一个以内存为中心的数据平台,具有强一致性.高可用.强大的SQL.K/V以及其所对应的应用接口(API).结构…
1.集群和部署 Ignite集群基于无共享架构,所有的集群节点都是平等的,独立的,整个集群不存在单点故障. 通过灵活的Discovery SPI组件,Ignite节点可以自动地发现对方,因此只要需要,可以轻易地对集群进行缩放.(与哪套集群类似呢? ES) Ignite可以独立运行,可以组成集群,可以运行于Kubernetes和Docker容器中,也可以运行在Apache Mesos以及Hadoop Yarn上,可以运行于虚拟机和云环境,也可以运行于物理机,从技术上来说,集群部署在哪里,是没有限制…
1.关于Apache Ignite Apache Ignite是一个以内存为中心的分布式数据库.缓存和处理平台,支持事务.分析以及流式负载,可以在PB级数据上享有内存级的性能.比传统的基于磁盘或闪存的技术具有更高的性能,同时他还为应用和不同的数据源之间提供高性能.分布式内存中数据组织管理的功能. Apache Ignite允许用户将常用的热数据储存在内存中,它支持分片和复制两种方式,让开发者可以均匀地将数据分布式到整个集群的主机上.同时,Ignite还可支撑任何底层存储平台,不管是RDBMS.N…
任何深度学习都是从数据开始的,这是关键点.没有数据,就无法训练模型,也无法评估模型质量,更无法做出预测,因此,数据源非常重要.在做研究.构建新的神经网络架构.以及做实验时,会习惯于使用最简单的本地数据源,通常是不同格式的文件,这种方法确实非常有效.但有时需要更加接近于生产环境,那么简化和加速生产数据的反馈,以及能够处理大数据就变得非常重要,这时就需要Apache Ignite大展身手了. Apache Ignite是以内存为中心的分布式数据库.缓存,也是事务性.分析性和流式负载的处理平台,可以实…
1. 介绍 2. 实验说明 2.1 实验环境 2.2 实验方法 2.3 实验负载 3. MapReduce on alluxio 3.1 读取10G文件(1G split) 3.2 读取20G文件(1G split) 3.3 读取60G文件(1G split) 3.4 读取60G文件(512MB split) 4. Spark on Alluxio 5. 关于使用alluxio来提升性能的注意点 5.1 alluxio是否以memory speed来进行读写? 5.2 如何使用alluxio提升…
Ignite是什么 Apache Ignite内存数据组织是高性能的.集成化的以及分布式的内存平台,他可以实时地在大数据集中执行事务和计算,和传统的基于磁盘或者闪存的技术相比,性能有数量级的提升.        地址:  https://ignite.apache.org/   特性一览 可以将Ignite视为一个独立的.易于集成的内存组件的集合,目的是改进应用程序的性能和可扩展性,部分组件包括: 高级的集群化 数据网格(JCache) 流计算和CEP 计算网格 服务网格 Ignite文件系统…
一.Ignite简介 Apache Ignite 内存数组组织框架是一个高性能.集成和分布式的内存计算和事务平台,用于大规模的数据集处理,比传统的基于磁盘或闪存的技术具有更高的性能,同时他还为应用和不同的数据源之间提供高性能.分布式内存中数据组织管理的功能. 二.Ignite历史 Ignite来源于尼基塔·伊万诺夫于2007年创建的GridGain系统公司开发的GridGain软件,尼基塔领导公司开发了领先的分布式内存片内数据处理技术-领先的Java内存片内计算平台,今天在全世界每10秒它就会启…
预期成果 1.1   当前问题 当前以图搜图应用存在的问题: 当前使用spark RDD方案无法达到数据实时加载(每10分钟加载一次,虽然可配,但太短可能会有问题) Spark RDD内存会被分为两部分,一部分用来缓存数据一部分用来计算,Spark默认配置只有差不多50%的内存用于缓存(也就是说executor配了100G,只有50多G可以被用来做缓存),虽然比例可以进行配置,但增加缓存内存比例后,是否会影响计算性能有待测试. 当前数据全缓存到spark jvm内存中,GC时间较长会导致影响计算…
Apache Ignite内存数据组织是高性能的.集成化的以及分布式的内存平台,他可以实时地在大数据集中执行事务和计算,和传统的基于磁盘或者闪存的技术相比,性能有数量级的提升. 将数据存储在缓存中能够显著地提高应用的速度,因为缓存能够降低数据在应用和数据库中的传输频率.Apache Ignite允许用户将常用的热数据储存在内存中,它支持分片和复制两种方式,让开发者可以均匀地将数据分布式到整个集群的主机上.同时,Ignite还支撑任何底层存储平台,不管是RDBMS.NoSQL,又或是HDFS. 在…
1.概述 本篇博客将对Ignite的基础环境.集群快照.分布式计算.SQL查询与处理.机器学习等内容进行介绍. 2.内容 2.1 什么是Ignite? 在学习Ignite之前,我们先来了解一下什么是Ignite?首先,Ignite是Apache开源的顶级项目之一.Ignite 内存数组组织框架是一个高性能.集成和分布式的内存计算和事务平台,用于大规模的数据集处理,比传统的基于磁盘或闪存的技术具有更高的性能,同时他还为应用和不同的数据源之间提供高性能.分布式内存中数据组织管理的功能. 2.2 安装…
[TOC] 前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark streaming从kafka中不断拉取数据进行词频统计.本文首先对spark streaming嵌入kafka的方式进行归纳总结,之后简单阐述Spark streaming+kafka在舆情项目中的应用,最后将自己在Spark Streaming+kafka的实际优化中的一些经验进行归纳总结.(如有任何纰漏…
集群发现机制 在Ignite中的集群号称是无中心的,而且支持命令行启动和嵌入应用启动,所以按理说很简单.而且集群有自动发现机制感觉对于懒人开发来说太好了,抱着试一试的心态测试一下吧. 在Apache Ignite中有三种自有的发现机制:组播.静态IP.组播+静态IP.下面就这几种来试一试吧. 测试方法简述 测试的方法主要是通过搭建2台tomcat服务器,使用nginx来代理这2台tomcat,tomcat服务器里有一个web应用,此应用内通过Apache Ignite webSession cl…
测试方法 为了对Ignite做一个基本了解,做了一个性能测试,测试方法也比较简单主要是针对client模式,因为这种方法和使用redis的方式特别像.测试方法很简单主要是下面几点: 不作参数优化,默认配置进行测试 在一台linux服务器上部署Ignite服务端,然后自己的笔记本作客户端 按1,10,20,50,100,200线程进行测试 测试环境说明 服务器: [09:36:56] ver. 1.7.0#20160801-sha1:383273e3 [09:36:56] OS: Linux 2.…
摘要: 1.RDD的五大属性 1.1 partitions(分区) 1.2 partitioner(分区方法) 1.3 dependencies(依赖关系) 1.4 compute(获取分区迭代列表) 1.5 preferedLocations(优先分配节点列表) 2.RDD实现类举例 2.1 MapPartitionsRDD 2.2 ShuffledRDD 2.3 ReliableCheckpointRDD 3.RDD可以嵌套吗? 内容: 1.RDD的五大属性 1.1partitions(分区…
最近迷上了spark,写一个专门处理语料库生成词库的项目拿来练练手, github地址:https://github.com/LiuRoy/spark_splitter.代码实现参考wordmaker项目,有兴趣的可以看一下,此项目用到了不少很tricky的技巧提升性能,单纯只想看懂源代码可以参考wordmaker作者的一份简单版代码. 这个项目统计语料库的结果和执行速度都还不错,但缺点也很明显,只能处理GBK编码的文档,而且不能分布式运行,刚好最近在接触spark,所以用python实现了里面…
个人主页:http://www.linbingdong.com 简书地址:http://www.jianshu.com/p/a7f75b868568 简介 本文主要记录如何安装配置Hive on Spark,在执行以下步骤之前,请先确保已经安装Hadoop集群,Hive,MySQL,JDK,Scala,具体安装步骤不再赘述. 背景 Hive默认使用MapReduce作为执行引擎,即Hive on mr.实际上,Hive还可以使用Tez和Spark作为其执行引擎,分别为Hive on Tez和Hi…
[TOC] 前言 在使用Spark Streaming的过程中对于计算产生结果的进行持久化时,我们往往需要操作数据库,去统计或者改变一些值.最近一个实时消费者处理任务,在使用spark streaming进行实时的数据流处理时,我需要将计算好的数据更新到hbase和mysql中,所以本文对spark操作hbase和mysql的内容进行总结,并且对自己踩到的一些坑进行记录. Spark Streaming持久化设计模式 DStreams输出操作 print:打印driver结点上每个Dstream…
[TOC] Spark简介 整体认识 Apache Spark是一个围绕速度.易用性和复杂分析构建的大数据处理框架.最初在2009年由加州大学伯克利分校的AMPLab开发,并于2010年成为Apache的开源项目之一. Spark在整个大数据系统中处于中间偏上层的地位,如下图,对hadoop起到了补充作用: 基本概念 Fork/Join框架是Java7提供了的一个用于并行执行任务的框架, 是一个把大任务分割成若干个小任务,最终汇总每个小任务结果后得到大任务结果的框架. 第一步分割任务.首先我们需…
作者:Syn良子 出处:http://www.cnblogs.com/cssdongl 转载请注明出处 一.传统方式 这种方式就是常用的TableInputFormat和TableOutputFormat来读写hbase,如下代码所示 简单解释下,用sc.newAPIHadoopRDD根据conf中配置好的scan来从Hbase的数据列族中读取包含(ImmutableBytesWritable, Result)的RDD, 随后取出rowkey和value的键值对儿利用StatCounter进行一…
一.Spark简介: 以下是百度百科对Spark的介绍: Spark 是一种与 Hadoop 相似的开源集群计算环境,但是两者之间还存在一些不同之处,这些有用的不同之处使 Spark 在某些工作负载方面表现得更加优越,换句话说,Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载. Spark 是在 Scala 语言中实现的,它将 Scala 用作其应用程序框架.与 Hadoop 不同,Spark 和 Scala 能够紧密集成,其中的 Scala 可以像操作本地集…
Spark是一个内存迭代式运算框架,通过RDD来描述数据从哪里来,数据用那个算子计算,计算完的数据保存到哪里,RDD之间的依赖关系.他只是一个运算框架,和storm一样只做运算,不做存储. Spark程序可以运行在Yarn.standalone.mesos等平台上,standalone是Spark提供的一个分布式运行平台,分为master和worker两个角色. Standalone模式安装:只要修改一个文件即可 Spark-env.sh为: (master没有做HA) #指定JAVA_HOME…
Spark简介 视频教程: 1.优酷 2.YouTube 简介: Spark是加州大学伯克利分校AMP实验室,开发的通用内存并行计算框架.Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目Spark以其先进的设计理念,迅速成为社区的热门项目,围绕着Spark推出了Spark SQL.Spark Streaming.MLLib和GraphX等组件,也就是BDAS(伯克利数据分析栈),这些组件逐渐形成大数据处理一站式解决平台. Spark使用Scala语言实现,…
Spark是现在应用最广泛的分布式计算框架,oozie支持在它的调度中执行spark.在我的日常工作中,一部分工作就是基于oozie维护好每天的spark离线任务,合理的设计工作流并分配适合的参数对于spark的稳定运行十分重要. Spark Action 这个Action允许执行spark任务,需要用户指定job-tracker以及name-node.先看看语法规则: 语法规则 <workflow-app name="[WF-DEF-NAME]" xmlns="uri…
没用过IDEA工具,听说跟Eclipse差不多,sbt在Idea其实就等于maven在Eclipse.Spark运行在JVM中,所以要在Idea下运行spark,就先要安装JDK 1.8+ 然后加入Scala和Spark的依赖包就可以进行开发了,不要安装低版本的JDK. 先下载Idea的社区版 https://www.jetbrains.com/idea/download/download-thanks.html?platform=windows&code=IIC Scala.Spark环境 安…