Georgia and Bob 给出一个严格递增的正整数数列\(\{a_i\}\),每一次操作可以对于其中任意一个数减去一个正整数,但仍然要保证数列的严格递增性,现在两名玩家轮流操作,不能操作的玩家判负,询问先手是否能够必胜. 解 注意到除去严格递增性后,就是Nim游戏了,所以问题主体依赖于Nim定理,于是要设法转化为Nim游戏,这里采取捆绑法,也就是阶梯博弈,从最后一个数开始,每两个作为一对,第一个如果无数捆绑,则与0捆绑. 此时,对手如果对一对数中的前一个进行操作,你必然可以对这对数的后一个…