监督学习(Supervised learning)】的更多相关文章

In supervised learning, we are given a data set and already know what our correct output should look like, having the idea that there is a relationship between the input and the output. Supervised learning problems are categorized into "regression&qu…
监督学习:简单来说就是给定一定的训练样本(这里一定要注意,样本是既有数据,也有数据对应的结果),利用这个样本进行训练得到一个模型(可以说是一个函数),然后利用这个模型,将所有的输入映射为相应的输出,之后对输出进行简单的判断从而达到了分类(或者说回归)的问题.简单做一个区分,分类就是离散的数据,回归就是连续的数据. 非监督学习:同样,给了样本,但是这个样本是只有数据,但是没有其对应的结果,要求直接对数据进行分析建模. 比如我们去参观一个画展,我们完全对艺术一无所知,但是欣赏完多幅作品之后,我们也能…
定义符号 m:训练样本的数目 n:特征的数量 x‘s:输入变/特征值 y‘s:输出变量/目标变量 (x,y):训练样本 ->(x(i),y(i)):训练集,第i个训练样本,i=1,2..,m 监督学习 定义:(口头表达,非正式)我们给学习算法一个数据集,这个数据集由“正确答案”组成,它的目标是给定某个训练集,需要学习某个函数h:X->Y(x到Y的映射), 使得h(x)就是一个“好”的预测器,能够给出相应的输出值y.函数h称为hypothesis. 解释:首先通过训练集来学习出一个算法得到一个假…
by 南大周志华 摘要 监督学习技术通过学习大量训练数据来构建预测模型,其中每个训练样本都有其对应的真值输出.尽管现有的技术已经取得了巨大的成功,但值得注意的是,由于数据标注过程的高成本,很多任务很难获得如全部真值标签这样的强监督信息.因此,能够使用弱监督的机器学习技术是可取的.本文综述了弱监督学习的一些研究进展,主要关注三种弱监督类型:不完全监督,即只有一部分样本有标签:不确切监督,即训练样本只有粗粒度的标签:以及不准确监督,即给定的标签不一定总是真值. 关键词:机器学习,弱监督学习,监督学习…
[机器学习] Coursera ML笔记 - 监督学习(Supervised Learning) - Representation http://blog.csdn.net/walilk/article/details/50922854…
Machine Learning Algorithms Study Notes 高雪松 @雪松Cedro Microsoft MVP 本系列文章是Andrew Ng 在斯坦福的机器学习课程 CS 229 的学习笔记. Machine Learning Algorithms Study Notes 系列文章介绍 2    Supervised Learning    3 2.1    Perceptron Learning Algorithm (PLA)    3 2.1.1    PLA --…
摘要: 本文是吴恩达 (Andrew Ng)老师<机器学习>课程,第一章<绪论:初识机器学习>中第3课时<监督学习>的视频原文字幕.为本人在视频学习过程中逐字逐句记录下来以便日后查阅使用.现分享给大家.如有错误,欢迎大家批评指正,在此表示诚挚地感谢!同时希望对大家的学习能有所帮助. In this video (article) I am going to define what is probably the most common type of machine l…
监督学习即是supervised learning,原始数据中有每个数据有自己的数据结构同时有标签,用于classify,机器learn的是判定规则,通过已成熟的数据training model达到判断新点类型的目的. 非监督学习即是unsupervised learning,原始数据中没有附加标签,仅有数据结构,cluster的过程是机器发现相似数据结构先去找相似pattern,没有新加入的数据,仅是对原始数据的描述.  …
自监督学习(Self-Supervised Learning)多篇论文解读(下) 之前的研究思路主要是设计各种各样的pretext任务,比如patch相对位置预测.旋转预测.灰度图片上色.视频帧排序等等.CVPR19和ICCV19上,Google Brain的几个研究员发表了两篇论文,从另外的视角分析和研究self-supervised learning问题.两篇paper名字分别是:Revisiting Self-Supervised Visual Representation Learnin…
自监督学习(Self-Supervised Learning)多篇论文解读(上) 前言 Supervised deep learning由于需要大量标注信息,同时之前大量的研究已经解决了许多问题.所以近期大家的研究关注点逐渐转向了Unsupervised learning,许多顶会包括ICML, NeurIPS, CVPR, ICCV相继出现一些不错的paper和研究工作. 这里主要关注Unsupervised learning一类特定的方法:Self-supervised learning(自…