Twitter的SnowFlake分布式id生成算法】的更多相关文章

二进制相关知识回顾 1.所有的数据都是以二进制的形式存储在硬盘上.对于一个字节的8位到底是什么类型 计算机是如何分辨的呢? 其实计算机并不负责判断数据类型,数据类型是程序告诉计算机该如何解释内存块. 2.对于字符的存储,先将字符转化成其字符集的码点,(码点就是一个数字),然后把该数字转成2进制存储.所以我们只要记得数字的存储就ok了.字符的码点程序采用无符号处理,即没有符号位,数值型默认都是有符号位的. 1个字节的最高位是符号位所以一个数字能够存储的范围是-128-127 3.原码 正数5: 0…
转载自:https://segmentfault.com/a/1190000011282426 概述 SnowFlake算法生成id的结果是一个64bit大小的整数,它的结构如下图: 1位,不用.二进制中最高位为1的都是负数,但是我们生成的id一般都使用整数,所以这个最高位固定是0 41位,用来记录时间戳(毫秒). 41位可以表示241−1个数字, 如果只用来表示正整数(计算机中正数包含0),可以表示的数值范围是:0 至 241−1,减1是因为可表示的数值范围是从0开始算的,而不是1. 也就是说…
本文来自美团技术团队“照东”的分享,原题<Leaf——美团点评分布式ID生成系统>,收录时有勘误.修订并重新排版,感谢原作者的分享. 1.引言 鉴于IM系统中聊天消息ID生成算法和生成策略的重要性(因为某种意义上来说:聊天消息ID的优劣决定了IM应用层某些功能实现的难易度),所以即时通讯网近期正在着重整理有关IM中的聊天消息ID算法方面的文章,包括微信团队的这篇<微信技术分享:微信的海量IM聊天消息序列号生成实践(算法原理篇)>,以及融云分享的<融云技术分享:解密融云IM产品…
理解分布式id生成算法SnowFlake https://segmentfault.com/a/1190000011282426#articleHeader2 分布式id生成算法的有很多种,Twitter的SnowFlake就是其中经典的一种. 概述 SnowFlake算法生成id的结果是一个64bit大小的整数,它的结构如下图: 图片描述 1位,不用.二进制中最高位为1的都是负数,但是我们生成的id一般都使用整数,所以这个最高位固定是0 41位,用来记录时间戳(毫秒). 41位可以表示241−…
一.概述 分布式 ID 生成算法的有很多种,Twitter 的 SnowFlake 就是其中经典的一种. SnowFlake 算法生成 ID 的结果是一个 64bit 大小的整数,它的结构如下图: 1 位,不用.二进制中最高位为 1 的都是负数,但是我们生成的 id 一般都使用整数,所以这个最高位固定是 0. 41 位,用来记录时间戳(毫秒).41 位可以表示 2^41 个数字:如果只用来表示正整数(计算机中正数包含 0),可以表示的数值范围是:0 至 2^41−1,也就是说 41 位可以表示…
概述 分布式id生成算法的有很多种,Twitter的SnowFlake就是其中经典的一种,SnowFlake算法生成id的结果是一个64bit大小的整数,它的结构如下图: 1位,不用.二进制中最高位为1的都是负数,但是我们生成的id一般都使用整数,所以这个最高位固定是0 41位,用来记录时间戳(毫秒). 41位可以表示$2^{41}-1$个数字, 如果只用来表示正整数(计算机中正数包含0),可以表示的数值范围是:0 至 $2^{41}-1$,减1是因为可表示的数值范围是从0开始算的,而不是1.…
import java.lang.management.ManagementFactory; import java.net.InetAddress; import java.net.NetworkInterface; /** * Twitter_Snowflake<br> * SnowFlake的结构如下(每部分用-分开):<br> * 0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 - 0000…
细聊分布式ID生成方法 https://mp.weixin.qq.com/s?__biz=MjM5ODYxMDA5OQ==&mid=403837240&idx=1&sn=ae9f2bf0cc5b0f68f9a2213485313127&scene=0&key=710a5d99946419d9131c07b23b6a64817dae072d5d487704ca48973eaf609b4a353f531f14c3bf9e8afd66ae7a06428e&asce…
在分库分表之后你必然要面对的一个问题,就是id咋生成? 因为要是一个表分成多个表之后,每个表的id都是从1开始累加自增长,那肯定不对啊. 举个例子,你的订单表拆分为了1024张订单表,每个表的id都从1开始累加,这个肯定有问题了! 你的系统就没办法根据表主键来查询订单了,比如id = 50这个订单,在每个表里都有! 所以此时就需要分布式架构下的全局唯一id生成的方案了,在分库分表之后,对于插入数据库中的核心id,不能直接简单使用表自增id,要全局生成唯一id,然后插入各个表中,保证每个表内的某个…
一.需求缘起 几乎所有的业务系统,都有生成一个记录标识的需求,例如: (1)消息标识:message-id (2)订单标识:order-id (3)帖子标识:tiezi-id 这个记录标识往往就是数据库中的唯一主键,数据库上会建立聚集索引(cluster index),即在物理存储上以这个字段排序. 这个记录标识上的查询,往往又有分页或者排序的业务需求,例如: (1)拉取最新的一页消息:selectmessage-id/ order by time/ limit 100 (2)拉取最新的一页订单…