一. 近邻搜索 从这里开始我将会对LSH进行一番长篇大论.因为这只是一篇博文,并不是论文.我觉得一篇好的博文是尽可能让人看懂,它对语言的要求并没有像论文那么严格,因此它可以有更强的表现力. 局部敏感哈希,英文locality-sensetive hashing,常简称为LSH.局部敏感哈希在部分中文文献中也会被称做位置敏感哈希.LSH是一种哈希算法,最早在1998年由Indyk在[1]上提出.不同于我们在数据结构教材中对哈希算法的认识,哈希最开始是为了减少冲突方便快速增删改查,在这里LSH恰恰相…
局部敏感哈希 转载请注明http://blog.csdn.net/stdcoutzyx/article/details/44456679 在检索技术中,索引一直须要研究的核心技术.当下,索引技术主要分为三类:基于树的索引技术(tree-based index).基于哈希的索引技术(hashing-based index)与基于词的倒排索引(visual words based inverted index)[1]. 本文主要对哈希索引技术进行介绍. 哈希技术概述 在检索中.须要解决的问题是给定一…
1. 概述 LSH是由文献[1]提出的一种用于高效求解最近邻搜索问题的Hash算法.LSH算法的基本思想是利用一个hash函数把集合中的元素映射成hash值,使得相似度越高的元素hash值相等的概率也越高.LSH算法使用的关键是针对某一种相似度计算方法,找到一个具有以上描述特性的hash函数.LSH所要求的hash函数的准确数学定义比较复杂,以下给出一种通俗的定义方式: 对于集合S,集合内元素间相似度的计算公式为sim(*,*).如果存在一个hash函数h(*)满足以下条件:存在一个相似度s到概…
Assembling large genomes with single-molecule sequencing and locality-sensitive hashing 好好读读,算法系列的好文章! Assembling large genomes with single-molecule sequencing and locality-sensitive hashing - NATURE BIOTECHNOLOGY marbl/MHAP  - Github MinHash Alignme…
Kernelized Locality-Sensitive Hashing Page   Brian Kulis (1) and Kristen Grauman (2)(1) UC Berkeley EECS and ICSI, Berkeley, CA(2) University of Texas, Department of Computer Sciences, Austin, TX Introduction Fast indexing and search for large databa…
局部敏感哈希(Locality Sensitive Hashing,LSH)算法是我在前一段时间找工作时接触到的一种衡量文本相似度的算法.局部敏感哈希是近似最近邻搜索算法中最流行的一种,它有坚实的理论依据并且在高维数据空间中表现优异.它的主要作用就是从海量的数据中挖掘出相似的数据,可以具体应用到文本相似度检测.网页搜索等领域. 1. 基本思想 局部敏感哈希的基本思想类似于一种空间域转换思想,LSH算法基于一个假设,如果两个文本在原有的数据空间是相似的,那么分别经过哈希函数转换以后的它们也具有很高…
from:https://www.cnblogs.com/maybe2030/p/4953039.html 阅读目录 1. 基本思想 2. 局部敏感哈希LSH 3. 文档相似度计算 局部敏感哈希(Locality Sensitive Hashing,LSH)算法是我在前一段时间找工作时接触到的一种衡量文本相似度的算法.局部敏感哈希是近似最近邻搜索算法中最流行的一种,它有坚实的理论依据并且在高维数据空间中表现优异.它的主要作用就是从海量的数据中挖掘出相似的数据,可以具体应用到文本相似度检测.网页搜…
http://blog.csdn.net/pipisorry/article/details/48858661 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Leskovec courses学习笔记之 Locality-Sensitive Hashing(LSH) 局部敏感哈希 {This is the first half of discussion of a powerful technique for focusing search on things…
简介 局部敏感哈希(Locality Sensitive Hasing)是一种近邻搜索模型,由斯坦福大学的Mose Charikar提出.我们用一种随机投影(Random Projection)的方式来创建LSH model.随机投影要求我们首先选择一个(这里考虑最简单的情况)超平面(由一个向量\(r\)定义),然后用这个超平面去散列输入的向量.给定一个输入向量\(v\)和一个超平面\(r\),我们令\(h(v)=sgn(v \cdot r)\),\(h(v)=\pm 1\)取决于输入向量在超平…
http://blog.csdn.net/pipisorry/article/details/49686913 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Leskovec courses学习笔记 相似项的发现:局部敏感哈希(LSH, Locality-Sensitive Hashing) {博客内容:More about Locality-Sensitive Hashing:在海量数据挖掘MMDS week2: 局部敏感哈希Locality-Sensit…