LINK 思路 首先因为式子后面把方案数乘上了 所以其实只用输出所有方案的攻击力总和 然后很显然可以用强化牌就尽量用 因为每次强化至少把下面的牌翻一倍,肯定是更优的 然后就只有两种情况 强化牌数量少于k 强化牌数量大于等于k 根据乘法原理,设\(f_{i,j}\)是选i张强化牌用j张的倍数总和,\(g_{i,j}\)是选i张攻击用j张的倍数总和 \(ans+=f_{k,k}*g_{m-i,m-k}\) \(ans+=f_{i,k-1}*g_{m-i,1}\) 然后f的计算可以量化大小这个东西,就…
题目链接 loj2538 题解 比较明显的是,由于强化牌倍数大于\(1\),肯定是能用强化牌尽量用强化牌 如果强化牌大于等于\(k\),就留一个位给攻击牌 所以我们将两种牌分别排序,企图计算\(F(i,j)\)表示\(i\)张强化牌选出最强的\(j\)张的所有方案的倍数和 \(G(i,j)\)表示从\(i\)张攻击牌选出最强\(j\)张的所有方案的伤害和 那么 \[ans = \sum\limits_{i = 0}^{k - 1} F(i,i)G(m - i,k - i) + \sum\limi…
$ \color{#0066ff}{ 题目描述 }$ 九条可怜在玩一个很好玩的策略游戏:Slay the Spire,一开始九条可怜的卡组里有 \(2n\) 张牌,每张牌上都写着一个数字\(w_i\),一共有两种类型的牌,每种类型各 \(n\) 张: 攻击牌:打出后对对方造成等于牌上的数字的伤害. 强化牌:打出后,假设该强化牌上的数字为\(x\),则其他剩下的攻击牌的数字都会乘上 \(x\).保证强化牌上的数字都大于 1. 现在九条可怜会等概率随机从卡组中抽出 \(m\) 张牌,由于费用限制,九…
题解 由于强化卡都是大于1的,我们分析一下就会发现,尽可能多的用强化卡,至少用一张攻击卡,一定是每组卡牌的最优选择 所以我们把攻击卡和强化卡从大到小排序 我们设\(g[i][j]\)表示前i张卡牌里选择j张强化卡,能强化的倍数之和 如果\(j <= K - 1\) \(g[i][j] = g[i - 1][j] + g[i - 1][j - 1] * w[i]\) 否则 \(g[i][j] = g[i - 1][j] + g[i - 1][j - 1]\) 但是如果用前i张卡牌里选择j张攻击卡,…
题目链接 题意分析 这个题其实不是期望 就是一共有\(C_{2n}^m\)种情况 每一种情况选择\(k\)张牌 然后求最大攻击值的总和 我们考虑 当前抽出了选出了\(i\)张强化牌 \(m-i\)张攻击牌 首先 可以肯定的是 能出强化牌就尽量出强化牌 我们去枚举\(i\) 如果\(i<k\) 那么就出\(i\)张强化牌 \(m-i\)张攻击牌 如果\(i≥k\) 那么就出\(k-1\)张强化牌 \(1\)张攻击牌 \(CDY(i,j)\)表示i张强化牌出\(j\)张 所有方案强化的倍率之和 \(…
Update on 1.5 学了 zhou888 的写法,真是又短又快. 并且空间是 \(O(n)\) 的,速度十分优秀. 题意 LOJ #2538. 「PKUWC 2018」Slay the Spire 题解 首先我们考虑拿到一副牌如何打是最优的,不难发现是将强化牌从大到小能打就打,最后再从大到小打攻击牌 . 为什么呢 ? 证明(简单说明) : 如果不是这样 , 那么我们就是有强化牌没有用 , 且攻击牌超过两张 . 我们考虑把最小的那张攻击牌拿出来 , 然后放入一张强化牌 . \(\becau…
Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次询问给定一个集合 \(S\),求如果从 \(x\) 出发一直随机游走,直到点集 \(S\) 中所有点都至少经过一次的话,期望游走几步. 特别地,点 \(x\)(即起点)视为一开始就被经过了一次. 答案对 $998244353 $ 取模. 输入格式 第一行三个正整数 \(n,Q,x\). 接下来 \(…
「PKUWC2018」随机游走(min-max容斥+FWT) 以后题目都换成这种「」形式啦,我觉得好看. 做过重返现世的应该看到就想到 \(min-max\) 容斥了吧. 没错,我是先学扩展形式再学特殊形式的. \[E(\text{max}(S))=\sum_{T\subseteq S}(-1)^{|T|+1}E(\text{min}(T))\] 问题转化之后,然后我们可以枚举所有状态然后 \(O(n)\) 树形 \(dp\) \(-1\) 那项可以 \(O(2^n)\) 推出来,接下来就是子集…
「PKUWC2018」猎人杀 解题思路 首先有一个很妙的结论是问题可以转化为已经死掉的猎人继续算在概率里面,每一轮一直开枪直到射死一个之前没死的猎人为止. 证明,设所有猎人的概率之和为 \(W\) ,当前已经死掉了概率之和为 \(T\) 的猎人,原问题下一个射死 \(i\) 的概率 \(P\) 为 \[ P =\dfrac{w_i}{W-T} \] 转化过后的问题下一个射死 \(i\) 的概率为 \[ P=\dfrac{T}{W}P+\dfrac{w_i}{W} \\ \dfrac{W-T}{W…
题目链接 loj#2537. 「PKUWC2018」Minimax 题解 设\(f_{u,i}\)表示选取i的概率,l为u的左子节点,r为u的子节点 $f_{u,i} = f_{l,i}(p \sum_{j < i} + (1 - p)\sum_{j > i}f_{r,j}) + f_{r,i}(p\sum_{j < i}f_{l,i} + (1 - p)\sum_{j > i}f_{l,j}) $ 对于每个节点s维护当前节点所有可能的概率和 ,线段树合并 代码 #include&…