keras中的重要函数】的更多相关文章

https://blog.csdn.net/u012969412/article/details/70882296…
一.问题: keras中不能在每个epoch实时显示学习速率learning rate,从而方便调试,实际上也是为了调试解决这个问题:Deep Learning 31: 不同版本的keras,对同样的代码,得到不同结果的原因总结 二.解决方法 1.把下面代码加入keras文件callbacks.py中: class DisplayLearningRate(Callback): '''Display Learning rate . ''' def __init__(self): super(Dis…
摘自: https://www.cnblogs.com/Anita9002/p/8136357.html 1.模型的信息提取 # 节点信息提取 config = model.get_config() # 把model中的信息,solver.prototxt和train.prototxt信息提取出来 model = Model.from_config(config) # 还回去 # or, for Sequential: model = Sequential.from_config(config)…
深度学习的优化算法,说白了就是梯度下降.每次的参数更新有两种方式. 一. 第一种,遍历全部数据集算一次损失函数,然后算函数对各个参数的梯度,更新梯度.这种方法每更新一次参数都要把数据集里的所有样本都看一遍,计算量开销大,计算速度慢,不支持在线学习,这称为Batch gradient descent,批梯度下降. 二. 另一种,每看一个数据就算一下损失函数,然后求梯度更新参数,这个称为随机梯度下降,stochastic gradient descent.这个方法速度比较快,但是收敛性能不太好,可能…
 先从sklearn说起吧,如果学习了sklearn的话,那么学习Keras相对来说比较容易.为什么这样说呢? 我们首先比较一下sklearn的机器学习大致使用流程和Keras的大致使用流程: sklearn的机器学习使用流程: from sklearn.模型簇 import 模型名 from sklearn.metrics import 评价指标 ''' 数据预处理及训练测试集分离提取''' myModel = 模型名称() # 对象初始化 myModel.fit(训练集x , 训练集y) #…
tensorflow中的模型常常是protobuf格式,这种格式既可以是二进制也可以是文本.keras模型保存和加载与tensorflow不同,keras中的模型保存和加载往往是保存成hdf5格式. keras的模型保存分为多种情况. 一.不保存模型只显示大概结构 model.summary() 这个函数会打印模型结构,但是仅仅是打印到控制台. keras.utils.plot_model() 使用graphviz中的dot.exe生成网络结构拓扑图 二.保存模型结构 keras.models.…
用keras搭好模型架构之后的下一步,就是执行编译操作.在编译时,经常需要指定三个参数 loss optimizer metrics 这三个参数有两类选择: 使用字符串 使用标识符,如keras.losses,keras.optimizers,metrics包下面的函数 例如: sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) model.compile(loss='categorical_crossentropy', opt…
在统计学中,损失函数是一种衡量损失和错误(这种损失与“错误地”估计有关,如费用或者设备的损失)程度的函数.假设某样本的实际输出为a,而预计的输出为y,则y与a之间存在偏差,深度学习的目的即是通过不断地训练迭代,使得a越来越接近y,即 a - y →0,而训练的本质就是寻找损失函数最小值的过程. 常见的损失函数为两种,一种是均方差函数,另一种是交叉熵函数.对于深度学习而言,交叉熵函数要优于均方差函数,原因在于交叉熵函数配合输出层的激活函数如sigmoid或softmax函数能更快地加速深度学习的训…
最近在学习SSD的源码,其中有两个自定的层,特此学习一下并记录. import keras.backend as K from keras.engine.topology import InputSpec from keras.engine.topology import Layer import numpy as np class L2Normalization(Layer): ''' Performs L2 normalization on the input tensor with a l…
写这篇博客的原因主要是为了总结下在深度学习中我们常会遇到的一些问题,以及不知道如何解决,我准备把这个部分作为一个系列,为了让大家少走一些坑,对于本博客有什么错误,欢迎大家指出,下面切入正题吧. 1. 深度学习,一个令人头疼的问题就是如何调参? 简而言之,如果数据集复杂的话,那么就要增加网络的层数,模型欠拟合了,加节点. 2. 关于验证集的loss曲线和acc曲线震荡,不平滑问题 出现loss震荡不平滑的原因可能如下: (1) 学习率可能太大 (2) batch size太小 (3) 样本分布不均…