有黑白关系: 枚举左部点(黑色点),然后$2^{i*(n-i)}$处理方法同:COGS 2353 2355 2356 2358 有标号的DAG计数 无关系: 发现,假设$f(i)$是一个连通块,对于一个连通块,变成无颜色的,除以二即可 由结论COGS 2353 2355 2356 2358 有标号的DAG计数:G,F为EGF,$G=ln F$ 所以方案就是:$e^{\frac{lnF}{2}}$ 至于连通的话,不用exp就可以了…
其实这三道题都是不错的……(虽然感觉第三题略套路了……) 分别写一下做法好了…… COGS2392 有标号的二分图计数 I 这个就很简单了,Noip难度. 显然可以直接认为黑点和白点分别位于二分图两侧,枚举二分图左侧的点数,如果左侧的点数为$k$,那么就有$C_n^k$种选择方案,并且有$k(n-k)$条边可选,因为每条边都可以选或不选,因此答案就是 \begin{align}\sum_{k=0}^n C_n^k 2^{k(n-k)}\end{align} 由于只需求出一个答案,直接快速幂搞一搞…
题目分析 n个点的二分染色图计数 很显然的一个式子 \[ \sum_{i=0}^n\binom{n}{i}2^{i(n-i)} \] 很容易把\(2^{i(n-i)}\)拆成卷积形式,前面讲过,不再赘述. n个点的二分图计数 设\(f_n\)表示n个点的二分染色图个数. 设\(g_n\)表示n个点的二分连通图个数. 设\(h_n\)表示n个点的二分图个数. 分别构造f,g,h的EGF\(F,G,H\). 显然有 \[ \begin{aligned} F&=\sum_i(2*G)^i=e^{2G}…
题目分析 来自2013年王迪的论文<浅谈容斥原理> 设\(f_{n,S}\)表示n个节点,入度为0的点集恰好为S的方案数. 设\(g_{n,S}\)表示n个节点,入度为0的点集至少为S的方案数. 对于\(g_{n,S}\),有递推式 \[ g_{n,S}=2^{|S|(n-|S|)}g_{n-|S|,\emptyset} \] f与g有如下关系 \[ g_{n,S}=\sum_{S\subseteq T}f_{n,T} \] 子集反演一下 \[ f_{n,S}=\sum_{S\subseteq…
不用连通 枚举入度为0的一层 卷积 发现有式子: 由$n^2-i^2-(n-i)^2=2*i*(n-i)$ 可得$2^{i*(n-i)}=\frac{{\sqrt 2}^{(n^2)}}{{\sqrt 2}^{(i^2)}*{\sqrt 2}^{(n-i)^2}}$ 设$g(n)={\sqrt 2}^{(n^2)}$ 则,$2^{i*(n-i)}=\frac{g(n)}{g(i)*g(n-i)}$ 指数相乘变成指数相加减,把$g(n)$除过去即可 连通 弱联通:变成无向边是连通的 f(n)表示n…
题意:求n个点有向图其中SCC是一个的方案数 考虑求出若干个不连通的每个连通块都是SCC方案数然后再怎么做一做.(但是这里不能用Ln,因为推不出来) 设$f_n$为答案, $g_n$为n个点的有向图,分成若干个连通块,每个连通块都是一个SCC,且当连通块大小为奇数时候贡献1系数,偶数时候贡献-1系数.(这里把系数放进去可以避免再来一个函数的麻烦!) $h_n$表示n个点有向图个数$h_n=2^{n*(n-1)}$ $h_n=\sum_{i=1}^nC(n,i)\times g(i)\times…
有标号的DAG计数系列 有标号的DAG计数I 题意 给定一正整数\(n\),对\(n\)个点有标号的有向无环图(可以不连通)进行计数,输出答案\(mod \ 10007\)的结果.\(n\le 5000\) 题解 显然是\(O(n^2)\)来做. 设\(f(i)\)表示\(i\)个点有标号的有向无环图的个数.而\(DAG\)中的特殊点显然只有两种,要么是出度为\(0\),要么入度为\(0\).随便枚举哪一种都行,这里枚举入度为\(0\)的点. 那么得到式子: \[f(n)=\sum_{i=1}^…
题面 题目描述 给定一正整数n,对n个点有标号的有向无环图进行计数. 这里加一个限制:此图必须是弱连通图. 输出答案mod 998244353的结果 输入格式 一个正整数n. 输出格式 一个数,表示答案. 样例输入 3 样例输出 18 提示 对于第i个点 1<=n<=10000i. 题目分析 综合COGS2355 [HZOI 2015] 有标号的DAG计数 II与[2013集训胡渊鸣]城市规划. \(f(i)\)用前一题的方法求出,用后一题的方法推出\(g(i)\)即为答案. 代码实现 #in…
题面 题目描述 给定一正整数n,对n个点有标号的有向无环图(可以不连通)进行计数,输出答案mod 998244353的结果 输入格式 一个正整数n 输出格式 一个数,表示答案 样例输入 3 样例输出 25 数据范围和约定 对于第i个点 1<=n<=10000*i 增大了数据范围. 题目分析 COGS2353 [HZOI2015]有标号的DAG计数 I升级版. 在这道题的基础上继续往下化: \[ \begin{split} f(n)&=\sum_{i=1}^n\frac {n!}{(n-…
[HZOI 2015] 有标号的DAG计数 IV 我们已经知道了\(f_i\)表示不一定需要联通的\(i\)节点的dag方案,考虑合并 参考[题解]P4841 城市规划(指数型母函数+多项式Ln),然后答案\(h_i\)母函数\(H(x)\)就这样解 由于 \[ H(x)=\sum_{i=0}^{\inf} \dfrac {(F(x))^i} {i!} \] 则 \[ H(x)=e^{F(x)} \] 球\(\ln\)就好了 //@winlere #include<iostream> #inc…