HBase架构设计】的更多相关文章

摘要:本篇是本人在做一个大数据项目时,对于系统架构的一点总结,如何在保证存储量的情况下,又能保证数据的检索速度. 前提:      Solr.SolrCloud提供了一整套的数据检索方案,HBase提供了完善的大数据存储机制.需求:      1.对于添加到HBase中的结构化数据,能够检索出来.             2.数据量较大,达到10亿,100亿数据量.             3.检索的实时性要求较高,秒级更新. 说明:      以下是使用Solr和HBase共同搭建的系统架构.…
一.Client 包含访问HBase的接口并维护cache来加快对HBase的访问. 二.Zookeeper 1.保证任何时候,集群中只有一个master. 2.存储所有Region的寻址入口. 3.实时监控Region server的上线和下线信息,并实时通知Master. 4.存储HBase的schema和table元数据. 三.Master 1.为Region server分配region. 2.负责Region server的负载均衡. 3.发现失效的Region server并重新分配…
如何在保证存储量的情况下,又能保证数据的检索速度. HBase提供了完善的海量数据存储机制,Solr.SolrCloud提供了一整套的数据检索方案. 使用HBase搭建结构数据存储云,用来存储海量数据:使用SolrCloud集群用来搭建搜索引擎,将要查找的结构化数据的ID查找出来,只配置它存储ID. 1.用户write data写数据(wd) 从用户提交写数据请求wd1开始:经历wd2写入MySQL数据库或写入结构数据存储云中:wd3提交到Solr集群中,从而依据业务需求创建索引. 2.用户re…
老刘是一名即将找工作的研二学生,写博客一方面是复习总结大数据开发的知识点,一方面是希望能够帮助和自己一样自学编程的伙伴.由于老刘是自学大数据开发,博客中肯定会存在一些不足,还希望大家能够批评指正,让我们一起进步! 今天为大家带来的内容是HBase的架构设计,讲讲HBase的架构设计为什么这么牛?本文内容不会很长,全是老刘总结的精华,大家不可错过! 1 背景 我们要提前知道两个问题,这两个问题的解决也恰好回答了HBase的架构设计为什么这么牛! 第一个问题是HBase作为一个分布式数据库,它是如何…
Flume(NG)架构设计要点及配置实践   Flume NG是一个分布式.可靠.可用的系统,它能够将不同数据源的海量日志数据进行高效收集.聚合.移动,最后存储到一个中心化数据存储系统中.由原来的Flume OG到现在的Flume NG,进行了架构重构,并且现在NG版本完全不兼容原来的OG版本.经过架构重构后,Flume NG更像是一个轻量的小工具,非常简单,容易适应各种方式日志收集,并支持failover和负载均衡. 架构设计要点 Flume的架构主要有一下几个核心概念: Event:一个数据…
http://www.blogjava.net/DLevin/archive/2015/08/22/426950.html HBase读的实现 通过前文的描述,我们知道在HBase写时,相同Cell(RowKey/ColumnFamily/Column相同)并不保证在一起,甚至删除一个Cell也只是写入一个新的Cell,它含有Delete标记,而不一定将一个Cell真正删除了,因而这就引起了一个问题,如何实现读的问题?要解决这个问题,我们先来分析一下相同的Cell可能存在的位置:首先对新写入的C…
http://www.blogjava.net/DLevin/archive/2015/08/22/426877.html 前记 公司内部使用的是MapR版本的Hadoop生态系统,因而从MapR的官网看到了这篇文文章:An In-Depth Look at the HBase Architecture,原本想翻译全文,然而如果翻译就需要各种咬文嚼字,太麻烦,因而本文大部分使用了自己的语言,并且加入了其他资源的参考理解以及本人自己读源码时对其的理解,属于半翻译.半原创吧. HBase架构组成 H…
原文:Scaling Pinterest - From 0 To 10s Of Billions Of Page Views A Month In Two Years 译文:两年内从零到每月十亿 PV 的发展来谈 Pinterest 的架构设计 Pinterest正经历了指数级曲线般的增长,每隔一个半月翻翻.在这两年里,Pinterest,从 每月PV量0增长到10亿,从两名成立者和一个工程师成长为四十个工程师,从一台MySQL 服务器增长到180台Web 服务器(Web Engine),240…
架构篇(1) 读书笔记 1.Scale(扩展):从数据库来看,就是让数据库能够提供更强的服务能力 ScaleOut: 是通过增加处理节点的方式来提高整体处理能力 ScaleUp: 是通过增加当前处理节点的处理能力来提高整体的处理能力 2.事务最小化原则: 避免分布式事务的解决方案 a)进行ScaleOut 设计的时候合理设计切分规则,尽可能保证事务所需数据在同一个MySQLServer 上,避免分布式事务.大多数时候也只能兼顾到一些大部分的核心事务,不是一个很完美的解决方案. b)大事务切分成多…
http://blog.csdn.net/jacktan/article/details/9200979 大数据的热度在持续的升温,继云计算之后大数据成为又一大众所追捧的新星.我们暂不去讨论大数据到底是否适用于您的组织,至少在互联网上已经被吹嘘成无所不能的超级战舰.好像一夜之间我们就从互联网时代跳跃进了大数据时代!关于到底什么是大数据,说真的,到目前为止就和云计算一样,让我总觉得像是在看电影<云图>——云里雾里的感觉.或许那些正在向你推销大数据产品的公司会对您描绘一幅乌托邦似的美丽画面,但是您…