论文来源:Hierarchical Attention Networks for Document Classification 1.概述 文本分类时NLP应用中最基本的任务,从之前的机器学习到现在基于词表示的神经网络模型,分类准确度也有了很大的提升.本文基于前人的思想引入多层注意力网络来更多的关注文本的上下文结构. 2.模型结构 多层注意力网络(HAN)的结构如下图所示: 整个网络结构包括四个部分: 1)词序列编码器 2)基于词级的注意力层 3)句子编码器 4)基于句子级的注意力层 整个网络结…
用于文本分类的RNN-Attention网络 https://blog.csdn.net/thriving_fcl/article/details/73381217 Attention机制在NLP上最早是被用于seq2seq的翻译类任务中,如Neural Machine Translation by Jointly Learning to Align and Translate这篇文章所说. 之后在文本分类的任务中也用上Attention机制,这篇博客主要介绍Attention机制在文本分类任务…
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 textCNN 模型 charCNN 模型 Bi-LSTM 模型 Bi-LSTM + Attention 模型 RCNN 模型 Adversarial LSTM 模型 Transformer 模型 ELMo 预训练模型 BERT 预训练模型 所有代码均在textClassifier仓库中. 2 数据集…
将迁移学习用于文本分类 < Universal Language Model Fine-tuning for Text Classification> 2018-07-27 20:07:43 ttv56 阅读数 4552更多 分类专栏: 自然语言处理   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/u014475479/article/details/81253506 本文发表于自然…
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 textCNN 模型 charCNN 模型 Bi-LSTM 模型 Bi-LSTM + Attention 模型 RCNN 模型 Adversarial LSTM 模型 Transformer 模型 ELMo 预训练模型 BERT 预训练模型 所有代码均在textClassifier仓库中. 2 数据集…
目录 DAN(Deep Average Network) Fasttext fasttext文本分类 fasttext的n-gram模型 Doc2vec DAN(Deep Average Network) MLP(Multi-Layer Perceptrons)叫做多层感知机,即由多层网络简单堆叠而成,进而我们可以在输出层加入softmax,或者将输入层作为特征进行提取后,输入到SVM,逻辑回归,朴素贝叶斯等传统分类器进行分类预测.其中最具代表的是DAN,其基本结构如下图所示: 在输入层,我们对…
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 textCNN 模型 charCNN 模型 Bi-LSTM 模型 Bi-LSTM + Attention 模型 RCNN 模型 Adversarial LSTM 模型 Transformer 模型 ELMo 预训练模型 BERT 预训练模型 所有代码均在textClassifier仓库中. 2 数据集…
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 textCNN 模型 charCNN 模型 Bi-LSTM 模型 Bi-LSTM + Attention 模型 RCNN 模型 Adversarial LSTM 模型 Transformer 模型 ELMo 预训练模型 BERT 预训练模型 所有代码均在textClassifier仓库中. 2 数据集…
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 textCNN 模型 charCNN 模型 Bi-LSTM 模型 Bi-LSTM + Attention 模型 RCNN 模型 Adversarial LSTM 模型 Transformer 模型 ELMo 预训练模型 BERT 预训练模型 所有代码均在textClassifier仓库中. 2 数据集…
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 textCNN 模型 charCNN 模型 Bi-LSTM 模型 Bi-LSTM + Attention 模型 RCNN 模型 Adversarial LSTM 模型 Transformer 模型 ELMo 预训练模型 BERT 预训练模型 所有代码均在textClassifier仓库中. 2 数据集…