思想极度简单 应用数学知识少 效果好(缺点?) 可以解释机器学习算法使用过程中的很多细节问题 更完整的刻画机器学习应用的流程 distances = [] for x_train in X_train: d=sqrt(np.sum((x_train-x)**2)) distances.append(d) distances=[sqrt(np.sum((x_train-x)**2)) for x_train in X_train] 可以说kNN是一个不需要训练过程的算法 K近邻算法是非常特殊的,可…
K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一.该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. 用官方的话来说,所谓K近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例(也就是上面所说的K个邻居), 这K个实例的多数属于某个类,就把该输入实例分类到这个类中.根据这个说法,咱们来看下引自维基百科上的…
六.网格搜索与 K 邻近算法中更多的超参数 七.数据归一化 Feature Scaling 解决方案:将所有的数据映射到同一尺度 八.scikit-learn 中的 Scaler preprocessing.py import numpy as np class StandardScaler: def __init__(self): self.mean_ = None self.scale_ = None def fit(self, X): """根据训练数据集X获得数据的均…
一.K近邻算法基础 KNN------- K近邻算法--------K-Nearest Neighbors 思想极度简单 应用数学知识少 (近乎为零) 效果好(缺点?) 可以解释机器学习算法使用过程中很多细节问题 更完整的刻画机器学习应用的流程 import numpy as np import matplotlib.pyplot as plt 实现我们自己的 kNN 创建简单测试用例 raw_data_X = [[3.393533211, 2.331273381], [3.110073483,…
  一.什么是K近邻算法? 定义: 如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. 来源: KNN算法最早是由Cover和Hart提出的一种分类算法. 计算距离公式: 两个样本的距离可以通过如下公式计算,又叫欧式距离. 比如说,a(a1,a2,a3),b(b1,b2,b3)   欧式距离 二.K近邻算法的实现 sk-learn近邻算法API sklearn.neighbors.KNeighborsClassifier(n_nei…
k-近邻算法采用测量不同特征值之间的距离来进行分类. 优点:精度高.对异常值不敏感.无数据输入假定 缺点:计算复杂度高.空间复杂度高 使用数据范围:数值型和标称型 用例子来理解k-近邻算法 电影可以按照题材分类,每个题材又是如何定义的呢?那么假如两种类型的电影,动作片和爱情片.动作片有哪些公共的特征?那么爱情片又存在哪些明显的差别呢?我们发现动作片中打斗镜头的次数较多,而爱情片中接吻镜头相对更多.当然动作片中也有一些接吻镜头,爱情片中也会有一些打斗镜头.所以不能单纯通过是否存在打斗镜头或者接吻镜…
算法 假定数据有M个特征,则这些数据相当于在M维空间内的点 \[X = \begin{pmatrix} x_{11} & x_{12} & ... & x_{1M} \\ x_{21} & x_{22} & ... & x_{2M} \\ . & . & & .\\ . & . & & .\\ . & . & & .\\ x_{N1} & x_{N2} & ... &am…
k-Nearest Neighbors简介 对于该图来说,x轴对应的是肿瘤的大小,y轴对应的是时间,蓝色样本表示恶性肿瘤,红色样本表示良性肿瘤,我们先假设k=3,这个k先不考虑怎么得到,先假设这个k是通过程序员经验得到. 假设此时来了一个新的样本绿色,我们需要预测该样本的数据是良性还是恶性肿瘤.我们从训练样本中选择k=3个离新绿色样本最近的样本,以选取的样本点自己的结果进行投票,如图投票结果为蓝色:红色=3:0,所以预测绿色样本可能也是恶性肿瘤. 再比如 此时来了一个新样本,我们选取离该样本最近…
目录 k近邻算法 一.k近邻算法学习目标 二.k近邻算法引入 三.k近邻算法详解 3.1 k近邻算法三要素 3.1.1 k值的选择 3.1.2 最近邻算法 3.1.3 距离度量的方式 3.1.4 分类决策规则 3.2 维数诅咒 四.k近邻算法的拓展 4.1 限定半径k近邻算法 4.2 最近质心算法 五.k近邻算法流程 5.1 输入 5.2 输出 5.3 流程 六.k近邻算法优缺点 6.1 优点 6.2 缺点 七.小结 更新.更全的<机器学习>的更新网站,更有python.go.数据结构与算法.…
k 近邻算法是一种基本分类与回归方法.我现在只是想讨论分类问题中的k近邻法.k近邻算法的输入为实例的特征向量,对应于特征空间的点,输出的为实例的类别.k邻近法假设给定一个训练数据集,其中实例类别已定.分类时,对新的实例,根据其k个最近邻的训练实例的类别,通过多数表决等方式进行预测.下面主要叙述k近邻算法,k近邻算法的模型和三个基本要素(距离度量.k值的选择.分类决策规则) k近邻算法 k近邻算法简单.直观:给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最近邻的k个实例,这k个实例…