【学习笔记】Polya定理】的更多相关文章

题目大意 求两两互不同构的含n个点的简单图有多少种. 简单图是关联一对顶点的无向边不多于一条的不含自环的图. a图与b图被认为是同构的是指a图的顶点经过一定的重新标号以后,a图的顶点集和边集能完全与b图一一对应. 题解 这个题是学习了Polya定理和群论以后的练手题,但是推了好久并没有推出来....真的是太难辣... 首先我先说一下我错误的想法: 很容易就把这个题转化成了给\(K_n\)的完全图上的边进行二着色的问题,然后,由于在组合数学课程中经常接触到多边形着色,所以我就把这个题错误的转化成了…
笔者经多番周折终于看懂了\(\text{Burnside}\)定理和\(\text{Polya}\)定理,特来写一篇学习笔记来记录一下. 群定义 定义:群\((G,·)\)是一个集合与一个运算·所定义的群.它所需要满足的性质是: 结合律:对于任意\(a,b,c\in G,a·b·c=a·(b·c).\) 封闭性:对于任意\(a,b\in G,a·b\in G.\) 单位元:存在\(e\in G,a·e=a.\) 逆元:\(\forall a\in G,\exists a'\in G,a·a'=a…
原文链接www.cnblogs.com/zhouzhendong/p/Burnside-Polya.html 问题模型 有一个长度为 $n$ 的序列,序列中的每一个元素有 $m$ 种取值. 如果两个序列循环同构,那么我们称这两个序列等价. 求两两不等价的序列个数. Burnside引理 假设有若干个置换 $P_1,P_2,\cdots$ ,设由这些置换生成的置换群为 $Q$ .如果序列 A 可以通过一个 $Q$ 中的置换变成序列 B,那么我们认为 A 和 B 等价. 对于一个置换 $P$ ,如果…
参考:刘汝佳<算法竞赛入门经典训练指南> 感觉是非常远古的东西了,几乎从来没有看到过需要用这个的题,还是学一发以防翻车. 置换:排列的一一映射.置换乘法相当于函数复合.满足结合律,不满足交换律. 置换的循环分解:即将置换看成一张有向图,分解成若干循环.循环的数量称为循环节. 以置换集合来描述等价关系.如果存在一个置换将一个方案映射到另一个方案,则这两个方案等价.置换集合应当构成置换群. 不动点:方案s经过置换f不变,则s为f的不动点. Burnside引理:等价类数量=所有置换的不动点数量的平…
群 群的定义 我们定义,对于一个集合 \(G\) 以及二元运算 \(\times\),如果满足以下四种性质,那我们就称 \((G,\times)\) 为一个群. 1. 封闭性 对于 \(a\in G,b\in G\),那么有 \(a\times b\in G\) 2. 结合律 \(a\times (b\times c)=(a\times b)\times c\) 似乎这个东西没有什么用蛤? 3. 单位元 存在一个元素 \(e\in G\),使得任意 \(a\in G\) 有 \(a\times…
Q:皮克定理这种一句话的东西为什么还要写学习笔记啊? A:多好玩啊... PS:除了蓝色字体之外都是废话啊...  Part I 1.顶点全在格点上的多边形叫做格点多边形(坐标全是整数) 2.维基百科 Given a simple polygon constructed on a grid of equal-distanced points (i.e., points with integer coordinates) such that all the polygon's vertices a…
昨天看了一下午<组合数学>最后一章然后晚上去看别人的blog发现怎么都不一样,我一定是学了假的polya 其实是一样的,只不过<组合数学>没有太多的牵扯群论.于是又从群论角度学了一遍. 现在来总结,我主要从书上的角度来,群论的知识见$TA$爷的总结 置换 设$X$为有限集${1,2,...,n}$,$X$的置换$i_1,i_2,...,i_n$是函数:$f:X \rightarrow X$$f$是满射的$X$所有置换的集合$S_n$ 函数的$compositon$运算: $(g \…
在介绍\(Polya\) 定理前,先来介绍一下群论(大概了解一下就好): 群是满足下列要求的集合: 封闭性:即有一个操作使对于这个集合中每个元素操作完都使这个集合中的元素 结合律:即对于上面那个操作有结合律 单位元:对于\(a * e = a\)则称\(e\)是集合\(A\)对于操作\(*\)(并不一定是相乘)的逆元 逆元:即有\(a * b = b * a = e\)对于元素\(a\)有逆元 置换群: 考虑这样的一个全置换集合,可以验证该集合为群.(置换不懂的话建议右转百度,这里不细说) 接下…
基本上只是整理了一下框架,具体的学习给出了个人认为比较好的博客的链接. PART1 数论部分 最大公约数 对于正整数x,y,最大的能同时整除它们的数称为最大公约数 常用的:\(lcm(x,y)=xy\gcd(x,y)\) 裴蜀定理 定理:对于方程\(ax+by=c\),其存在解的充要条件是\(gcd(a,b)|c\),可以拓展到n元的方程. 证明的话应该自己yy一下还是很容易(显然可得),不过要是想要严谨证明还是去百度吧qwq 扩展欧几里得定理 首先我们都知道\(gcd(a,b)=gcd(b,a…
提示: 本文并非严谨的数学分析,有很多地方是自己瞎口胡的,仅供参考.有错误请不吝指出 :p 1. 群 1.1 群的概念 群 \((S,\circ)\) 是一个元素集合 \(S\) 和一种二元运算 $ \circ $ 的合称,其满足以下性质. 封闭性 对于 \(\forall a,b \in S\) , \(\exist c \in S\) 使得 \(c = a \circ b\) 结合律 对于 \(\forall a,b,c \in S\) , \(a \circ (b \circ c) = (…