基于Attention的知识图谱关系预测 论文地址 Abstract 关于知识库完成的研究(也称为关系预测)的任务越来越受关注.多项最新研究表明,基于卷积神经网络(CNN)的模型会生成更丰富,更具表达力的特征嵌入,因此在关系预测上也能很好地发挥作用.但是这些知识图谱的嵌入独立地处理三元组,因此无法覆盖和收集到三元组周围邻居隐含着的复杂隐藏信息.为此,作者提出了一种新颖的基于注意力的特征嵌入方法,该方法可以捕获任何给定实体的邻居中的实体和关系特征. Introduction 最新的关系预测方法主要…
这篇论文试图将GAT应用于KG任务中,但是问题是知识图谱中实体与实体之间关系并不相同,因此结构信息不再是简单的节点与节点之间的相邻关系.这里进行了一些小的trick进行改进,即在将实体特征拼接在一起的时候还同时考虑了两个实体之间的关系向量. 就像上面图里所表示的,三个特征向量进行拼接之后再通过一层全连接层,然后通过卷积层和LeakyReLu层进行激活.之后softmax归一化,得到节点对节点的注意力系数. 上面是下一层新的实体表示,这里要注意的是上面k代表的是节点与节点之间的关系可能不止一个,我…
Hierarchical Attention Based Semi-supervised Network Representation Learning 1. 任务 给定:节点信息网络 目标:为每个节点生成一个低维向量   基于半监督的分层关注网络嵌入方法 2. 创新点: 以半监督的方式结合外部信息 1. 提出SHANE 模型,集成节点结构,文本和标签信息,并以半监督的方式学习网络嵌入 2. 使用分层注意网络学习节点的文本特征, 两层双向GRU 提取单词和句子的潜在特征   3. 背景 1. 现…
Unsupervised learning, attention, and other mysteries Get notified when our free report “Future of Machine Intelligence: Perspectives from Leading Practitioners” is available for download. The following interview is one of many that will be included…
目录 摘要 一.引言 二.相关工作 基于体素网格的特征学习 直接从非结构化点云中学习特征 从多视图模型中学习特征 几何深度学习的学习特征 三.GAPNet架构 3.1 GAPLayer 局部结构表示 单头GAPLayer 多头机制 3.2注意力池化层 3.3 GAPNet架构 四.实验 4.1分类 数据集 网络结构 训练细节 结果 消融研究 4.2 语义部件分割 数据集 模型结构 训练细节 结果 五.结论 GAPNet: Graph Attention based Point Neural Ne…
[清华NLP]图神经网络GNN论文分门别类,16大应用200+篇论文最新推荐 图神经网络研究成为当前深度学习领域的热点.最近,清华大学NLP课题组Jie Zhou, Ganqu Cui, Zhengyan Zhang and Yushi Bai同学对 GNN 相关的综述论文.模型与应用进行了综述,并发布在 GitHub 上.16大应用包含物理.知识图谱等最新论文整理推荐. GitHub 链接: https://github.com/thunlp/GNNPapers 目录            …
实体关系推理与知识图谱补全 Unsupervised Person Slot Filling based on Graph Mining 作者:Dian Yu, Heng Ji 机构:Computer Science Department, Rensselaer Polytechnic Institute 本文的任务为槽填充(Slot Filling),即从大规模的语料库中抽取给定实体(query)的被明确定义的属性(slot types)的值(slot fillers).对于此任务,本文叙述目…
IJCAI-TEMP:知识图谱上多跳推理的类型感知嵌入 论文地址: Type-aware Embeddings for Multi-Hop Reasoning over Knowledge Graphs IJCAI-TEMP:知识图谱上多跳推理的类型感知嵌入 摘要 1.引言 2.相关工作 2.1 查询嵌入(QE) 2.2 基于路径的方法 2.3 归纳式KGC 2.4 类型感知任务 3.背景 4.语义丰富嵌入 4.1 TER:类型感知的实体表示 4.2 TRR:类型感知的关系表示 4.2.1 St…
In one embodiment, a method includes receiving an instruction for decoding in a processor core and dynamically handling the instruction with one of multiple behaviors based on whether contention is predicted. If no contention is predicted, the instru…
https://www.gamedesigning.org/learn/game-based-learning/ I remember days gone by at elementary school when we would all file into the computer lab. We would all get a computer and boot up educational games like Math Blaster and Oregon Trail. Although…