Spark练习之action操作开发】的更多相关文章

Spark练习之action操作开发 一.reduce 1.1 Java 1.2 Scala 二.collect 2.1 Java 2.2 Scala 三.count 3.1 Java 3.2 Scala 四.take 4.1 Java 4.2 Scala 五.saveAsTextFile 5.1 Java 六.countByKey 6.1 Java 6.2 Scala 七.foreach 八.main函数 8.1 Java 8.2 Scala 一.reduce 1.1 Java private…
Spark练习之Transformation操作开发 一.map:将集合中的每个元素乘以2 1.1 Java 1.2 Scala 二.filter:过滤出集合中的偶数 2.1 Java 2.2 Scala 三.flatMap:将行拆分为单词 3.1 Java 3.2 Scala 四.groupByKey:将每个班级的成绩进行分组 4.1 Java 2.2 Scala 五.reduceByKey:统计每个班级的总分 5.1 Java 5.2 Scala 六.sortByKey:将学生分数进行排序…
一.Transformation map(func) 返回一个新的分布式数据集,由每个原元素经过函数处理后的新元素组成 filter(func) 返回一个新的数据集,经过fun函数处理后返回值为true的原元素组成 flatMap(func) 类似于map,但每个输入元素会被映射为0个或多个输出元素 mapPartitions(func)  类似于map,对RDD的每个分区起作用 intersection(otherDataset) 求两个RDD的交集 distinct([numTasks])…
1.reduce: 2.collect: 3.count: 4.take: 5.saveAsTextFile: 6.countByKey: 7.foreach: package sparkcore.java; import java.util.Arrays; import java.util.List; import java.util.Map; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaPai…
摘要: RDD:弹性分布式数据集,是一种特殊集合 ‚ 支持多种来源 ‚ 有容错机制 ‚ 可以被缓存 ‚ 支持并行操作,一个RDD代表一个分区里的数据集RDD有两种操作算子:         Transformation(转换):Transformation属于延迟计算,当一个RDD转换成另一个RDD时并没有立即进行转换,仅仅是记住       了数据集的逻辑操作         Ation(执行):触发Spark作业的运行,真正触发转换算子的计算 本系列主要讲解Spark中常用的函数操作:   …
不多说,直接上干货! Pair RDD的action操作 所有基础RDD 支持的行动操作也都在pair RDD 上可用…
不多说,直接上干货! action操作  …
[spark API 函数讲解 详细 ]https://www.iteblog.com/archives/1399#reduceByKey [重要API接口,全面 ] http://spark.apache.org/docs/1.1.1/api/python/pyspark.rdd.RDD-class.html ******** [广播变量] http://www.csdn.net/article/1970-01-01/2824552 调用广播变量通过:a.value,广播变量可以用在定义的函数…
基于Receivers的方法 这个方法使用了Receivers来接收数据.Receivers的实现使用到Kafka高层次的消费者API.对于所有的Receivers,接收到的数据将会保存在Spark executors中,然后由Spark Streaming启动的Job来处理这些数据. 然而,在默认的配置下,这种方法在失败的情况下会丢失数据,为了保证零数据丢失,你可以在Spark Streaming中使用WAL日志,这是在Spark 1.2.0才引入的功能,这使得我们可以将接收到的数据保存到WA…
根据Spark官方文档中的描述,在Spark Streaming应用中,一个DStream对象可以调用多种操作,主要分为以下几类 Transformations Window Operations Join Operations Output Operations 一.Transformations 1.map(func) map操作需要传入一个函数当做参数,具体调用形式为 val b = a.map(func) 主要作用是,对DStream对象a,将func函数作用到a中的每一个元素上并生成新…