在机器学习中,我们一直期望学习一个泛化能力(generalization)强的函数只有泛化能力强的模型才能很好地适用于整个样本空间,才能在新的样本点上表现良好. \[y=a+bx+cx^2+dx^3\tag{1} \] 如上图,公式(1)完美地拟合了训练空间中所有的点,如果具备过拟合(overfiting)的能力,那么这个方程肯定是一个比较复杂的非线性函数.正是因为这里的 \(x^2\) 和 \(x^3\) 的参数 \(c\) 和 \(d\) 使得这条曲线可以弯来弯去去拟合训练样本空间中的点.但…
http://blog.csdn.net/pipisorry/article/details/52108040 范数规则化 机器学习中出现的非常频繁的问题有:过拟合与规则化.先简单的来理解下常用的L0.L1.L2和核范数规则化,最后聊下规则化项参数的选择问题. 如何看待规则化项和过拟合 从不同角度来看待规则化 regularize这个词更多的意思是"使系统化","使体系化",也就是说不要走极端,要建立和谐社会,科学发展观. 1 监督机器学习问题无非就是"m…
今天看到一篇讲机器学习范数规则化的文章,讲得特别好,记录学习一下.原博客地址(http://blog.csdn.net/zouxy09). 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问题.这里因为篇幅比较庞大,为了不吓到大家,我将这个五个部分分成两篇博文.知识有限,以下都是我一些浅显的看法,如果理解存在错误,希望大家不吝指正.谢谢. 监督机器学习问题无非就是“minimizeyour error…
规则化和模型选择(Regularization and model selection) 转:http://www.cnblogs.com/jerrylead/archive/2011/03/27/1996799.html 1 问题      模型选择问题:对于一个学习问题,可以有多种模型选择.比如要拟合一组样本点,可以使用线性回归,也可以用多项式回归.那么使用哪种模型好呢(能够在偏差和方差之间达到平衡最优)? 还有一类参数选择问题:如果我们想使用带权值的回归模型,那么怎么选择权重w公式里的参数…
机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问题.这里因为篇幅比较庞大,为了不吓到大家,我将这个五个部分分成两篇博文.知识有限,以下都是我一些浅显的看法,如果理解存在错误,希望大家不吝指正.谢谢. 监督机器学习问题无非就是"minimizeyour error…
http://blog.csdn.net/zouxy09/article/details/24971995 机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问题.这里因为篇幅比较庞大,为了不吓到大家,我将这个五个部分分成两篇博文.知识有限,以下都是我一些浅显的看法…
机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问题.这里因为篇幅比较庞大,为了不吓到大家,我将这个五个部分分成两篇博文.知识有限,以下都是我一些浅显的看法,如果理解存在错误,希望大家不吝指正.谢谢. 监督机器学习问题无非就是“minimizeyour error…
机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问题.这里因为篇幅比较庞大,为了不吓到大家,我将这个五个部分分成两篇博文.知识有限,以下都是我一些浅显的看法,如果理解存在错误,希望大家不吝指正.谢谢. 监督机器学习问题无非就是"minimizeyour error…
目录: 一.L0,L1范数 二.L2范数 三.核范数 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问题.这里因为篇幅比较庞大,为了不吓到大家,我将这个五个部分分成两篇博文.知识有限,以下都是我一些浅显的看法,如果理解存在错误,希望大家不吝指正.谢谢. 监督机器学习问题无非就是“minimizeyour error while regularizing your parameters”,也就是在规则…
http://blog.csdn.net/zouxy09/article/details/24971995 机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问题.这里因为篇幅比较庞大,为了不吓到大家,我将这个五个部分分成两篇博文.知识有限,以下都是我一些浅显的看法…