pycaffe使用.solverstate文件继续训练】的更多相关文章

import caffe solver_file = "solver.prototxt" solverstate = "xx.solverstate" caffe.set_device(0) caffe.set_mode_gpu() solver = caffe.get_solver(solver_file) solver.restore(solverstate) solver.solve()…
需求:给出一段xml文件.要求按照鸳鸯输出. xml文件代码如下: <?xml version="1.0" encoding="utf-8"?> <contactList> <contact id="001"> <name>张三</name> <age>20</age> <phone>134222223333</phone> <ema…
该工作的主要目的是为了练习运用pycaffe来进行神经网络一站式训练,并从多个角度来分析对应的结果. 目标: python的运用训练 pycaffe的接口熟悉 卷积网络(CNN)和全连接网络(DNN)的效果差异性 学会从多个角度来分析分类结果 哪些图片被分类错误并进行可视化? 为什么被分错? 每一类是否同等机会被分错? 在迭代过程中,每一类的错误几率如何变化? 是否开始被正确识别后来又被错误识别了? 测试数据集:mnist 代码:https://github.com/TiBAiL/Pycaffe…
你可以从系统 /tmp 文件夹获取,名字是什么 caffe.ubuntu.username.log.INFO.....之类 =============================================================================================================== caffe在训练的时候不仅会保存当前模型的参数(也就是caffemodel)文件,也会把训练到当前状态信息全部保存下来,这个文件就是solverstat…
一.mnist数据集 mnist是一个手写数字数据库,由Google实验室的Corinna Cortes和纽约大学柯朗研究院的Yann LeCun等人建立,它有60000个训练样本集和10000个测试样本集.mnist数据库官方网址为:http://yann.lecun.com/exdb/mnist/ .可直接下载四个解压文件,分别对应:训练集样本.训练集标签.测试集样本和测试集标签.解压缩之后发现,其是在一个文件中包含了所有图像. 二.caffe支持的数据格式:Lmdb和Leveldb 它们都…
一.前言 本文会详细地阐述caffe-windows的配置教程.由于博主自己也只是个在校学生,目前也写不了太深入的东西,所以准备从最基础的开始一步步来.个人的计划是分成配置和运行官方教程,利用自己的数据集进行训练和利用caffe来实现别人论文中的模型(目前在尝试的是轻量级的SqueezeNet)三步走.不求深度,但求详细.因为说实话caffe-windows的配置当初花了挺多时间的,目前貌似还真没有从头开始一步步讲起的教程,所以博主就争取试着每一步都讲清楚吧. 这里说些题外话:之所以选择Sque…
caffe训练过程中会生成.caffemodel和.solverstate文件,其中caffemodel为模型训练文件,可用于参数解析,solverstate为中间状态文件 当训练过程由于断电等因素中断时,可用solverstate文件继续执行,具体运行脚本和训练脚本类似,只需添加snapshot状态参数即可. ./build/tools/caffe train \ --solver=examples/test/solver.prototxt --snapshot=examples/test/t…
1.数据.mnist_test_lmdb和mnist_train_lmdb数据 2.路径. (1)修改lenet_train_test.prototxt文件,训练和测试两处 source: "....省略/examples/mnist/mnist-train-leveldb" //写上你的绝对路径 backend: LEVELDB //格式改成LEVELDB (2)修改lenet_solver.prototxt文件: net: "....省略/examples/mnist/l…
1. MNIST数据集介绍 MNIST是一个手写数字数据库,样本收集的是美国中学生手写样本,比较符合实际情况,大体上样本是这样的: MNIST数据库有以下特性: 包含了60000个训练样本集和10000个测试样本集: 分4部分,分别是一个训练图片集,一个训练标签集,一个测试图片集,一个测试标签集,每个标签的值是0~9之间的数字: 原始图像归一化大小为28*28,以二进制形式保存 2.  Windows+caffe框架下MNIST数据集caffemodel分类模型训练及测试 1. 下载mnist数…
參考博客:https://blog.csdn.net/xiao_lxl/article/details/79106837 1获取源代码:git clone https://github.com/weiliu89/caffe.git2 进入目录中 :cd caffe 3,git checkout ssd 主要参考 https://github.com/weiliu89/caffe/tree/ssd 获取SSD的代码,下载完成后有一个caffe文件夹 git clone https://github…
转载请注明出处,楼燚(yì)航的blog,http://www.cnblogs.com/louyihang-loves-baiyan/ https://github.com/YihangLou/fast-rcnn-train-another-dataset 这是我在github上修改的几个文件的链接,求星星啊,求星星啊(原谅我那么不要脸~~) 在之前两篇文章中我介绍了怎么编译Fast RCNN,和怎么修改Fast RCNN的读取数据接口,接下来我来说明一下怎么来训练网络和之后的检测过程 先给看一…
画黑底白字的软件:KolourPaint. 假设所有"1"的图片放到名字为1的文件夹下.(0-9类似)..获取每个数字的名称文件后,手动表上标签.然后合成train.txt 1.获取文件夹内全部图像的名称: find ./1 -name '*.png'>1.txt //此时的1.txt文件中的图像名称包括路劲信息,要把前面的路径信息去掉. $ sudo sed -i "s/.\/1\///g" 1.txt          //(\表示转义,所以这里用双引号而…
(markdown是用jupypter notebook生成) mxnet为的提高IO效率, 不会直接读取图片文件, 而是先将图片列表和标签转换为RecordIO格式的二进制文件, 训练时就可以顺序读取数据, 大大提高了IO速率. 如何将图片列表与标签转换为RecordIO? mxnet直接提供了mnist与cifar数据集的recordIO格式, 但为了熟悉这个过程, 我决定自己手动来一遍: 将mnist数据的原始二进制格式转换为recordIO格式. 如何将mnist ubyte文件转换成i…
既然faster-rcnn原版发表时候是matlab版代码,那就用matlab版代码吧!不过遇到的坑挺多的,不知道python版会不会好一点. ======= update ========= 总体上包括这些步骤,请注意检查: 1 获取数据:(标准数据集/比赛数据/自行收集数据) 2 整理图片名和标注信息格式.指定训练集和测试集:(转voc格式,同时记得修改vocinit.m中类别信息:或者自己修改代码中读取数据的地方) 3 正确使用均值图像:手动算一个或用默认的减去128,别用错 4 选择网络…
在上一篇文章中,我介绍了<训练自己的haar-like特征分类器并识别物体>的前两个步骤: 1.准备训练样本图片,包括正例及反例样本 2.生成样本描述文件 3.训练样本 4.目标识别 ================= 今天我们将着重学习第3步:基于haar特征的adaboost级联分类器的训练.若将本步骤看做一个系统,则输入为正样本的描述文件(.vec)以及负样本的说明文件(.dat):输出为分类器配置参数文件(.xml). 老规矩,先介绍一下这篇文章需要的工具,分别是(1)训练用的open…
之前做了SVM的车脸检测,主要是针对车脸,接下来尝试利用Adaboost和Haar进行车脸的检测.我利用的主要是opencv中的cascade,其已经把Adaboost相关的算法做成了exe,直接调用就可以了,不像SVM中我们可能需要再调用.如果需要对boost源码进行修改,可以利用Cmake将生成opencv的源代码,(Cmake真是个很方便的东西,之前做交叉编译用Automake来弄,差点累的半死). 首先我来介绍一下几个主要使用的工具.分别在opencv库路径下的,build/x64/vc…
具体代码见https://github.com/zhiyishou/py-faster-rcnn 这是我对cup, glasses训练的识别 faster-rcnn在fast-rcnn的基础上加了rpn来将整个训练都置于GPU内,以用来提高效率,这里我们将使用ImageNet的数据集来在faster-rcnn上来训练自己的分类器.从ImageNet上可下载到很多类别的Image与bounding box annotation来进行训练(每一个类别下的annotation都少于等于image的个数…
原地址:http://www.cnblogs.com/zengqs/archive/2009/02/12/1389208.html OpenCV训练分类器 OpenCV训练分类器 一.简介 目标检测方法最初由Paul Viola [Viola01]提出,并由Rainer Lienhart [Lienhart02]对这一方法进行了改善.该方法的基本步骤为: 首先,利用样本(大约几百幅样本图片)的 harr 特征进行分类器训练,得到一个级联的boosted分类器. 分类器中的"级联"是指最…
上一篇记录的是学习caffe前的环境准备以及如何创建好自己需要的caffe版本.这一篇记录的是如何使用编译好的caffe做训练mnist数据集,步骤编号延用上一篇 <实践详细篇-Windows下使用VS2015编译安装Caffe环境(CPU ONLY) >的顺序. 二:使用caffe做图像分类识别训练测试mnist数据集 1.下载MNIST数据集,MNIST数据集包含四个文件信息,见表格: 文件 内容 train-images-idx3-ubyte.gz 训练集图片 - 55000 张 训练图…
谷歌在大型图像数据库ImageNet上训练好了一个Inception-v3模型,这个模型我们可以直接用来进来图像分类. 下载地址:https://storage.googleapis.com/download.tensorflow.org/models/inception_dec_2015.zip 下载完解压后,得到几个文件: 其中的classify_image_graph_def.pb 文件就是训练好的Inception-v3模型. imagenet_synset_to_human_label…
真正掌握一种算法,最实际的方法,完全手写出来. LSTM(Long Short Tem Memory)特殊递归神经网络,神经元保存历史记忆,解决自然语言处理统计方法只能考虑最近n个词语而忽略更久前词语的问题.用途:word representation(embedding)(词语向量).sequence to sequence learning(输入句子预测句子).机器翻译.语音识别等. 100多行原始python代码实现基于LSTM二进制加法器.https://iamtrask.github.…
工具:labelimg.MobaXterm 1.标注自己的数据集.用labelimg进行标注,保存后会生成与所标注图片文件名相同的xml文件,如图.我们标注的是井盖和路边栏,名称分了NoManholeCover.ManholeCover.WarningStick共3类标签名 2.下载yolov3项目工程.按照YoLo官网下载 git clone https://github.com/pjreddie/darknet cd darknet make 3.修改Makefile文件(文件就在下载的da…
SRILM是一个建立和使用统计语言模型的开源工具包,从1995年开始由SRI 口语技术与研究实验室(SRI Speech Technology and Research Laboratory)开发,现在仍然不断推出新版本,被广泛应用于语音识别.机器翻译等领域.这个工具包包含一组C++类库.一组进行语言模型训练和应用的可执行程序等.利用它可以非常方便地训练和应用语言模型.给定一组连续的词,调用SRILM提供的接口,可以得到这组词出现的概率. http://www.jianshu.com/p/5b1…
前面已经介绍了几种经典的目标检测算法,光学习理论不实践的效果并不大,这里我们使用谷歌的开源框架来实现目标检测.至于为什么不去自己实现呢?主要是因为自己实现比较麻烦,而且调参比较麻烦,我们直接利用别人的库去学习,可以节约很多时间,而且逐渐吃透别人代码,使得我们可以慢慢的接受. Object Detection API是谷歌开放的一个内部使用的物体识别系统.2016年 10月,该系统在COCO识别挑战中名列第一.它支持当前最佳的实物检测模型,能够在单个图像中定位和识别多个对象.该系统不仅用于谷歌于自…
import tensorflow as tf from tensorflow.python.tools import freeze_graph #os.environ['CUDA_VISIBLE_DEVICES']='2' #设置GPU model_path = "D:\\JupyterWorkSpace\\Tensorflow\\Fine-tuning\\tensorflow-resnet-pretrained-20160509\\ResNet-L152.ckpt" #设置mode…
正样本来源是INRIA数据集中的96*160大小的人体图片,使用时上下左右都去掉16个像素,截取中间的64*128大小的人体. 负样本是从不包含人体的图片中随机裁取的,大小同样是64*128(从完全不包含人体的图片中随机剪裁出64*128大小的用于人体检测的负样本). SVM使用的是OpenCV自带的CvSVM类. 首先计算正负样本图像的HOG描述子,组成一个特征向量矩阵,对应的要有一个指定每个特征向量的类别的类标向量,输入SVM中进行训练. 训练好的SVM分类器保存为XML文件,然后根据其中的…
以mnist数据集为例: bat训练脚本: Build\x64\Release\caffe.exe train --solver=examples/mnist/lenet_solver.prototxt pause 在这个模型的基础上,继续训练. 继续训练之前,也可以修改lenet_solver.prototxt中的学习率. Build\x64\Release\caffe.exe train --solver=examples/mnist/lenet_solver.prototxt --snap…
本文以CaffeNet为例: 1. train_val.prototxt  首先,train_val.prototxt文件是网络配置文件.该文件是在训练的时候用的. 2.deploy.prototxt 该文件是在测试时使用的文件. 区别: 首先deploy.prototxt文件都是在train_val.prototxt文件的基础上删除了一些东西,所形成的. 由于两个文件的性质,train_val.prototxt文件里面训练的部分都会在deploy.prototxt文件中删除. 在train_v…
最近下载了Imagenet2012的数据文件,训练数据下有很多tar文件,这些tar文件都在一个目录内,所以想批量解压到该目录下每个单独的文件夹内 批量解压的步骤是, 1.列出所有的以tar为后缀的文件, 2.然后用字符串截取,去除.tar后缀, 3.然后mkdir创建新的文件夹, 4.之后用tar xvf解压到新创建的文件夹内 bash文件如下 for i in `ls *.tar` do mkdir ./${i%.tar} tar xvf $i -C ./${i%.tar} #echo ${…
一.简介: adaboost分类器由级联分类器构成,"级联"是指最终的分类器是由几个简单分类器级联组成.在图像检测中,被检窗口依次通过每一级分类器,这样在前面几层的检测中大部分的候选区域就被排除了,全部通过每一级分类器检测的区域即为目标区域. 分类器训练完以后,就可以应用于输入图像中的感兴趣区域的检测.检测到目标区域输出为1,否则输出为0.为了检测整副图像,在图像中移动搜索窗口,检测每一个位置来确定可能的目标.为了搜索不同大小的目标物体,在图像中检测未知大小的目标物体,扫描过程中用不同…