题意:给你一个长宽高为x,y,z的长方体,里面每个格子放了灯,再给你k次选取任意长方体形状的区块,对其内所有灯开或关操作,初始为关,问亮灯数量的期望值. 题解:首先考虑选取区块的概率,使某个灯在被选取的区块内要求为三维的每个坐标都在选取范围内如 \(x1<=x0<=x2\) 一个维度为选中的情况总数为\[Q_{x} = x^2 - (a-1)^2 - (x-a)^2 \] 所以一个格点被选到的概率为\(p=\frac{Q_{x}Q_{y}Q_{z}}{{x^2}{y^2}{z^2}} \) 再…
题意:在一个三维的空间,每个点都有一盏灯,开始全是关的.现在每次随机选两个点,把两个点之间的全部点,开关都按一遍,问k次过后开着的灯的期望数量: 析:很容易知道,如果一盏灯被按了奇数次,那么它肯定是开的,否则就是关的,所以我们只要计算每盏灯开着的概率就好了.对于每盏灯,假设开一次的概率是p, 这个很容易求得,那么开一共k次有奇数次开着的和是多少呢?假设Fn表示n次奇数的和,那么Fn = Fn * (1-p) + (1-Fn)*p,然后就好算了.解得Fn = 0.5 - 0.5*(1-2p)^n.…
题目链接:https://vjudge.net/problem/LightOJ-1284 1284 - Lights inside 3D Grid    PDF (English) Statistics Forum Time Limit: 4 second(s) Memory Limit: 32 MB You are given a 3D grid, which has dimensions X, Y and Z. Each of the X x Y x Z cells contains a l…
题面: You are given a 3D grid, which has dimensions X, Y and Z. Each of the X x Y x Z cells contains a light. Initially all lights are off. You will have K turns. In each of the K turns, .... 题意: 一个大立方体里面选择k次小的立方体,将小的立方体里面灯泡的开关按一下,问最后的小灯泡亮起的个数期望 思路: 单独…
学习博客: 戳这里 戳这里 戳这里 戳这里 题意: 在一个三维的空间,每个点都有一盏灯,开始全是关的, 现在每次随机选两个点,把两个点之间的全部点,开关都按一遍:问k次过后开着的灯的期望数量: 题解: 肯定不能从随机抽取两个数这里入手的,要求开着的灯的数量就从对每一盏灯,操作结束后灯开着的概率,然后将这些概率求和就是对于整个矩阵到最后开着的灯的数量了,这就把矩阵的问题落实到了对于求每个坐标的概率的问题. 对每个点单独计算贡献,即k次过后每个点开关被按了奇数次的期望 一个点如果被包到所选空间里,那…
You are given a 3D grid, which has dimensions X, Y and Z. Each of the X x Y x Z cells contains a light. Initially all lights are off. You will have K turns. In each of the K turns, You select a cell A randomly from the grid, You select a cell B rando…
Lights inside 3D Grid LightOJ - 1284 题意: 在一个三维的空间,每个点都有一盏灯,开始全是关的, 现在每次随机选两个点,把两个点之间的全部点,开关都按一遍:问k次过后开着的灯的期望数量: 题解:对每个点 单独计算贡献,即k次过后每个点开关被按了奇数次的期望 对于每个点来说,要使得该点开关被按过,那么选择的两个点不能在该点的同侧,即三个方向上都在两侧 这样的概率为$P = \frac{(X \cdot X - (i - 1) \cdot (i - 1) - (X…
题目链接 题意: 给一个X * Y * Z 的立方体, 每个单位立方体内都有一盏灯, 初始状态是灭的, 你每次操作如下: 1)选择一个点(x1, y1, z1)     再选择一个点(x2, y2, z2)     将这两个点所形成的立方体内所有的灯全部转换状态(灭的变亮的, 亮的变灭的) 问, K次操作后, 亮着的灯的期望数目. 思路: 三维坐标系, 每个维度都是相互独立的, 所以可以分开计算再相乘. 考虑x轴, 对于每个点, 被选中的概率是多少:假设这个点左边有a个点,右边有b个点, 那么这…
option=com_onlinejudge&Itemid=8&page=show_problem&problem=2652" style="">题目链接:uva 11605 - Lights inside a 3d Grid 题目大意:给定一个三维坐标系大小,每一个位置有一个灯.初始状态为关.每次随机选中两个点,以这两点为对角线的长方体内全部灯转变状态.操作K次.问说平均情况下.最后会有多少栈灯亮着. 解题思路:枚举坐标系上的点.计算单个点亮着…
1419: Red is good Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 660  Solved: 257[Submit][Status][Discuss] Description 桌面上有R张红牌和B张黑牌,随机打乱顺序后放在桌面上,开始一张一张地翻牌,翻到红牌得到1美元,黑牌则付出1美元.可以随时停止翻牌,在最优策略下平均能得到多少钱. Input 一行输入两个数R,B,其值在0到5000之间 Output 在最优策略下平均能得到多少钱…
今天我们想与大家分享一个小的动画概念.这个梦幻般的效果是在马库斯·埃克特的原型应用程序里发现的​​.实现的基本思路是对网格项目进行 3D 旋转,扩展成全屏,并呈现内容.我们试图模仿应用程序的行为,因此创建了两个演示,分别演示垂直和水平旋转网格项. 温馨提示:为保证最佳的效果,请在 IE10+.Chrome.Firefox 和 Safari 等现代浏览器中浏览. 您可能感兴趣的相关文章 创意无限!一组网页边栏过渡动画[附源码下载] 真是好东西!13种非常动感的页面加载动画效果 你见过吗?9款超炫的…
题意:一个骰子在一个人正方形内,蜜蜂在任意一个位置可以出现,问看到点数的期望. 思路:半平面交+概率期望 #include<cstdio> #include<cstring> #include<algorithm> #include<iostream> #include<cstdlib> #include<string> #include<cmath> #include<vector> using namesp…
版权声明:未经本人允许,擅自转载,一旦发现将严肃处理,情节严重者,将追究法律责任! 序:代码部分待更[因为在家写博客,代码保存在机房] 测试分数:110 本应分数:160 改完分数:200 T1: 题解:推出了一个初始式子但是n的4分之3次方 忘了合并[实际上是没发现]本来应有60分的,但是忘记开long long 只有30分 因为一些公式不好写出来就直接截图题解吧! T2: 题解:很简单的概率期望,算出每个点被选的概率,然后在上树状数组或者线段树求逆序队,但是我只有80分,为什么解法不行?NO…
Mr. Chopsticks is interested in random phenomena, and he conducts an experiment to study randomness. In the experiment, he throws n balls into m boxes in such a manner that each ball has equal probability of going to each boxes. After the experiment,…
链接:https://www.nowcoder.com/acm/contest/147/E 来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他语言524288K 64bit IO Format: %lld 题目描述 Niuniu likes to play OSU! We simplify the game OSU to the following problem. Given n and m, there are n clicks. Each c…
题目描述 你分别有a.b.c个血量为1.2.3的奴隶主,假设英雄血量无限,问:如果对面下出一个K点攻击力的克苏恩,你的英雄期望会受到到多少伤害. 输入 输入包含多局游戏. 第一行包含一个整数 T (T<100) ,表示游戏的局数. 每局游戏仅占一行,包含四个非负整数 K, A, B 和 C ,表示克苏恩的攻击力是 K ,你有 A 个 1 点血量的奴隶 主, B 个 2 点血量的奴隶主, C 个 3 点血量的奴隶主. 保证 K 是小于 50 的正数, A+B+C 不超过 7 . 输出 对于每局游戏…
[LnOI2019]加特林轮盘赌(DP,概率期望) 题目链接 题解: 首先特判掉\(p=0/1\)的情况... 先考虑如果\(k=1\)怎么做到\(n^2\)的时间复杂度 设\(f[i]\)表示有\(i\)个人,\(k=1\)的时候幸存的概率 设\(g[i][j]\)表示\(i\)个人每个人挨一下恰好死\(j\)个人的概率 我们就可以列出转移方程: \[ f[i]=(1-p)\sum_{j=1}^{i-1}{f[j]*g[i-j]}+f[i]*g[i][0] \] 含义:枚举打了一圈后剩下多少人…
题目描述 n次向一个栈中加入0或1中随机1个,如果一次加入0时栈顶元素为1,则将这两个元素弹栈.问最终栈中元素个数的期望是多少. 输入 一行一个正整数 n . 输出 一行一个实数,表示期望剩下的人数,四舍五入保留三位小数. 样例输入 10 样例输出 4.168 题解 概率期望dp 显然任何时刻栈中的元素自底至顶一定是若干个0+若干个1. 但是如果设状态$p[i][j][k]$表示前$i$次操作,栈中$j$个0,$k$个1的概率,复杂度是$O(n^3)$的,显然会TLE. 注意到$0$的个数对状态…
题目: 为了庆祝新的一年到来,小M决定要粉刷一个大木板.大木板实际上是一个W*H的方阵.小M得到了一个神奇的工具,这个工具只需要指定方阵中两个格子,就可以把这两格子为对角的,平行于木板边界的一个子矩形全部刷好.小M乐坏了,于是开始胡乱地使用这个工具. 假设小M每次选的两个格子都是完全随机的(方阵中每个格子被选中的概率是相等的),而且小M使用了K次工具,求木板上被小M粉刷过的格子个数的期望值是多少. 题解: 我们发现我们无法直接进行概率期望dp 因为状态无法记录. 而在这道题中被染色的格子的位置不…
刚学完 高斯消元,我们来做几道题吧! T1:[BZOJ3143][HNOI2013]游走 Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分数.当小 Z 到达 N 号顶点时游走结束,总分为所有获得的分数之和. 现在,请你对这M条边进行编号,使得小Z获得的总分的期望值最小. Input 第一行是正整数N和M,分别表示该图的顶点数…
目录 基础概念 最大值不超过Y的期望 概率为P时期望成功次数 基础问题 拿球 随机游走 经典问题 期望线性性练习题 例题选讲 noip2016换教室 区间交 0-1边树求直径期望 球染色 区间翻转 二位&三维凸包点数期望 单选错位 KILL 后记 @(期望与概率) 基础概念 随机变量:有多种可能的取值的变量 万物都可以当做随机变量,包括常数,方便用 \(\sum\) 统计 P(A):事件 A 发⽣的概率 E(X):随机变量 X 的期望值,\(E(X)=Sum[ P(X=i)*i ]\) 独⽴事件…
一道挺难的概率期望dp,花了很长时间才学会div2的E怎么做,但这道题是另一种设法. https://codeforces.com/contest/1264/problem/C 要设为 \(dp_i\) 表示第 \(i\) 个格子期望经过多少次,所以 \(dp_{n+1}=1\). https://www.cnblogs.com/suncongbo/p/11996219.html…
原文链接www.cnblogs.com/zhouzhendong/p/UOJ299.html 前言 不会概率题的菜鸡博主做了一道概率题. 写完发现运行效率榜上的人都没有用心卡常数——矩阵怎么可以用数组呢?矩乘怎么可以用循环呢? 截止2019-05-15暂居运行效率榜一. 题解 首先,根据期望的线性性,容易得知,总期望等于以已知点为界的各个未知段的期望之和加上已知点的和.易知每段区间的期望只和自身转移系数和这段区间两端的已知点信息有关. 考虑到每次加入和删除信息时,只会影响 $O(1)$ 段区间的…
禁书目录 题目大意:清教需要定期给Index清除记忆,在此之前需要把当中的十万三千本禁书取出来......不幸的是,禁书一旦离开了Index就非常脆弱,具体来说,每一本禁书都有一个魔力值 ai ,其记载的内容是 bi ,取出后的 n 本不同的禁书形成了一个排列,如果说对于一本禁书 i ,其左边存在一本不弱于它的魔力值的禁书 j ,禁书 i 就会因为禁书 j 的影响而消失.求对于所有可能的禁书排列,能保留下来的记载内容的种类数之和.由于答案可能很大,只需要输出对998244353 取膜后的结果即可…
关于有向图走"无限次"后求概率/期望的口胡/[题解]HNCPC2019H 有向图 全是口胡 假了不管 讨论的都是图\(G=(V,E),|V|=n,|E|=m\)上的情况 "走无限次"这个概念很抽象,严谨的证明以及描述和概率的收敛性有关,由于我也不会在此就不讨论这些,但是根据一些概率的知识,可以发现,其实走无限次可以这样描述: 由于使用概率不好描述在无限次的情况时,每个点和点之间的关系,所以用期望.到时候根据期望的定义式反过来求概率.可能的问题是,"不是走无…
T1  chinese 根据他的问题i*f[i]我们容易联想到,答案其实是每种方案中每个点的贡献为1的加和 我们可以转变问题,每个点在所有方案的贡献 进而其实询问就是1-k的取值,有多少中方案再取个和 事实上这样做就是将每个点抽离出来,虽然每种方案中可能包含多个可行点,但是我们每次考虑的都只是一个点的贡献,所以正确 ps:指数不能取模 代码很短 1 #include<bits/stdc++.h> 2 #define int long long 3 using namespace std; 4…
题意:见大白书P181. 分析:一个一个点的进行分析,取其期望然后求和即可.假设当前点在第一次中被选到的概率为p,f[i]表示进行k次以后该点亮的概率(在这里也可以理解为期望),g[i]表示k次后该点不亮的概率,那么联立: 1.f[1] = p; 2.f[i] + g[i] = 1.0; 3.f[i] = f[i-1] * (1-p) + g[i-1] * p; 上面三个式子都很好理解.然后借助一下高中推数列的方法,可以推得:f[i] = 1/2-1/2*(1-2*p)^i. 那么,我们该怎么求…
题意: 给出一个n * m * h的空间 每次任意选择两个点  使得在以这两个点连线为对角线的空间的点的值 取反  (初始为0) 求经过k次操作后最后有多少点的值为1 解析: 遇到坐标分维去看  把三维的坐标轴分别在x轴  y轴  z轴去看 设p为一次操作能把这个点包含在操作的区域内的概率 因为每个点都是独立的 所以去考虑每一个点经过k次操作后的状态, 设f[i]为经过i次操作过后一个点为1的概率 g[i]为这个点为0的概率 则  f[i] + g[i] = 1  且    f[i] = f[i…
#include <iostream> #include <stdio.h> #include <cstring> #include <math.h> using namespace std; double GetP(int x, int N) { )-)/N/N; } double P2E(double p, int k) { -pow(-*p, k))/; } double GetE(int N, int M, int P, int K) { doubl…
题目链接:LightOJ - 1030 Description You are in a cave, a long cave! The cave can be represented by a \(1 \times N\) grid. Each cell of the cave can contain any amount of gold. Initially you are in position \(1\). Now each turn you throw a perfect \(6\) s…