作业文件: machine-learning-ex5 1. 正则化线性回归 在本次练习的前半部分,我们将会正则化的线性回归模型来利用水库中水位的变化预测流出大坝的水量,后半部分我们对调试的学习算法进行了诊断,并检查了偏差和方差的影响. 1.1 可视化数据集 x表示水位变化,y表示水流量.整个数据集分成三个部分 模型的训练集,用来从X,y中学习参数. 交叉验证集,从Xval, yval中决定正则化参数 测试集,用来预测的样本,从数据集为 Xtest, ytest. 绘制的图像如图1 1.2 正则化…
背景:实现一个线性回归模型,根据这个模型去预测一个水库的水位变化而流出的水量. 加载数据集ex5.data1后,数据集分为三部分: 1,训练集(training set)X与y: 2,交叉验证集(cross validation)Xval, yval: 3,测试集(test set): Xtest, ytest. 一:正则化线性回归(Regularized Linear Regression) 1,可视化训练集,如下图所示: 通过可视化数据,接下来我们使用线性回归去拟合这些数据集. 2,正则化线…
1.正规化的线性回归 (1)代价函数 (2)梯度 linearRegCostFunction.m function [J, grad] = linearRegCostFunction(X, y, theta, lambda) %LINEARREGCOSTFUNCTION Compute cost and gradient for regularized linear %regression with multiple variables % [J, grad] = LINEARREGCOSTFU…
问题描述:根据水库中蓄水标线(water level) 使用正则化的线性回归模型预 水流量(water flowing out of dam),然后 debug 学习算法 以及 讨论偏差和方差对 该线性回归模型的影响 ①可视化数据集 本作业的数据集分成三部分: ⓐ训练集(training set),样本矩阵(训练集):X,结果标签(label of result)向量 y ⓑ交叉验证集(cross validation set),确定正则化参数 Xval 和 yval ⓒ测试集(test set…
课程笔记 Coursera—Andrew Ng机器学习—课程笔记 Lecture 9_Neural Networks learning 作业说明 Exercise 4,Week 5,实现反向传播 backpropagation神经网络算法, 对图片中手写数字 0-9 进行识别. 数据集 :ex4data1.mat.手写数字图片数据,5000个样例.每张图片20px * 20px,也就是一共400个特征.数据集X维度为5000 * 400 ex4weights.mat.神经网络每一层的权重. 文件…
编程作业有两个文件 1.machine-learning-live-scripts(此为脚本文件方便作业) 2.machine-learning-ex1(此为作业文件) 将这两个文件解压拖入matlab工作区内并将machine-learning-live-scripts内的ex1.mlx拖入到machine-learning-ex1\ex1中 在命令提示符区输入subimit命令,并填写邮箱与提交凭证来提交作业. 1.A simple MATLAB function 修改warmUpExerc…
编程作业文件: machine-learning-ex2 1. Logistic Regression (逻辑回归) 有之前学生的数据,建立逻辑回归模型预测,根据两次考试结果预测一个学生是否有资格被大学录取. 载入学生数据,第1,2列分别为两次考试结果,第3列为录取情况. % Load Data % The first two columns contain the exam scores and the third column contains the label. data = load(…
问题描述:使用逻辑回归(logistic regression)和神经网络(neural networks)识别手写的阿拉伯数字(0-9) 一.逻辑回归实现: 数据加载到octave中,如下图所示: ①样本数据的可视化 随机选择100个样本数据,使用Octave可视化的结果如下: ②使用逻辑回归来实现多分类问题(one-vs-all) 所谓多分类问题,是指分类的结果为三类以上.比如,预测明天的天气结果为三类:晴(用y==1表示).阴(用y==2表示).雨(用y==3表示) 分类的思想,其实与逻辑…
问题描述:用逻辑回归根据学生的考试成绩来判断该学生是否可以入学 这里的训练数据(training instance)是学生的两次考试成绩,以及TA是否能够入学的决定(y=0表示成绩不合格,不予录取:y=1表示录取) 因此,需要根据trainging set 训练出一个classification model.然后,拿着这个classification model 来评估新学生能否入学. 训练数据的成绩样例如下:第一列表示第一次考试成绩,第二列表示第二次考试成绩,第三列表示入学结果(0--不能入学…
Question 1 Consider the problem of predicting how well a student does in her second year of college/university, given how well she did in her first year. Specifically, let x be equal to the number of “A” grades (including A-. A and A+ grades) that a…