「WC2016」挑战NPC】的更多相关文章

「WC2016」挑战NPC 解题思路 这个题建图非常厉害,带花树什么的只会口胡根本写不动,所以我写了机房某大佬教我的乱搞. 考虑把一个筐 \(x\) 拆成 \(x1,x2,x3\) 三个点,且这三个点相互连边,每对球和筐的连边都让球和筐拆出的三个点连边,这样如果筐内部的点存在一个匹配,那么这个筐就是半空的,所以我们需要先将球匹配完,然后不断尝试增广来自筐的点,每一次成功增广都使得答案 \(+1\) ,一般图最大匹配跑跑就好了. 下面的代码随时可能在 \(\text{uoj}\) 上变成 \(\t…
[BZOJ4405][WC2016]挑战NPC(带花树) 题面 BZOJ 洛谷 Uoj Description 小N最近在研究NP完全问题,小O看小N研究得热火朝天,便给他出了一道这样的题目: 有n个球,用整数1到n编号.还有m个筐子,用整数1到m编号. 每个筐子最多能装3个球. 每个球只能放进特定的筐子中.具体有e个条件,第i个条件用两个整数vi和ui描述,表示编号为vi的球可以放进编号为ui的筐子中. 每个球都必须放进一个筐子中.如果一个筐子内有不超过1个球,那么我们称这样的筐子为半空的.…
「WC2016」论战捆竹竿 前置知识 参考资料:<论战捆竹竿解题报告-王鉴浩>,<字符串算法选讲-金策>. Border&Period 若前缀 \(pre(s,x)​\) 与后缀 \(suf(s,n-x-1)​\) 相等,则 \(pre(s, x)​\) 是 \(s​\) 的一个 \(\text{Border}​\). \(x​\) 是 \(s​\) 的一个周期 (\(\text{Preiod}​\)) 满足 \(s[i]=s[i+x],\forall{1\leq i\le…
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/转载请注明出处,侵权必究,保留最终解释权! Description 小N最近在研究NP完全问题,小O看小N研究得热火朝天,便给他出了一道这样的题目: 有n个球,用整数1到n编号.还有m个筐子,用整数1到m编号. 每个筐子最多能装3个球. 每个球只能放进特定的筐子中.具体有e个条件,第i个条件用两个整…
一开始还真没想到是一般图匹配这种模型(毕竟才会的带花树) 把每一个盒子拆成3个,每一个可以放置进它的小球分别向这三个点连边,然后这三个点在连成一个三元环,最终答案就是小球数目-匹配数. 由于是一般图,所以套一个带花树就可以了. NOTICE:寻找增广路时,应该从球先找起,这样子才保证了每个球有地方放置. #include<iostream> #include<cstdio> #include<algorithm> #include<vector> #incl…
小 N 最近在研究 NP 完全问题,小 O 看小 N 研究得热火朝天,便给他出了一道这样的题目: 有 \(n\) 个球,用整数 \(1\) 到 \(n\) 编号.还有 \(m\) 个筐子,用整数 \(1\) 到 \(m\) 编号. 每个筐子最多能装 3 个球. 每个球只能放进特定的筐子中.具体有 \(e\) 个条件,第 \(i\) 个条件用两个整数 \(vi\) 和 \(ui\) 描述,表示编号为 \(vi\) 的球可以放进编号为 \(ui\) 的筐子中. 每个球都必须放进一个筐子中.如果一个筐…
「SDOI2009」Bill的挑战 传送门 状压 \(\text{DP}\) 瞄一眼数据范围 \(N\le15\),考虑状压. 设 \(f[i][j]\) 表示在所有串中匹配到第 \(i\) 位字符且匹配状态为 \(j\) 的方案数. 以及 \(g[i][c]\) 表示在所有串中匹配至第 \(i\) 位字符且第 \(i\) 位字符为 \(c\) 的合法最大匹配数(状态的数值最大) 那么我们就可以开始愉快地 \(\text{DP}\) 啦. 参考代码: /*--------------------…
[WC2016]挑战NPC(一般图最大匹配) Luogu 题解时间 思路十分有趣. 考虑一个筐只有不多于一个球才有1的贡献代表什么. 很明显等效于有至少两个位置没有被匹配时有1的贡献. 进而可以构造如下模型: 每个筐拆成三个点,三个点之间相互连边. 对于球可以匹配某个筐,将球向筐的三个点都连边. 这样一来,如果有一个筐只有不多于一个点被匹配,那么剩下的两个点可以自己匹配增加答案. 如此最终结果是 $ ans-n $ . 需要用到一般图最大匹配也即带花树. 由于答案要求输出匹配方案,所以要注意先匹…
「Linux」本来指的仅仅是内核.5年之前大多都是这么认为的,但是最近不这么说了. 最近一般都说「Linux」是个 OS,这里的OS,不仅仅是内核,而是指电脑的整体环境(除了内核,还包括一些外围的软件). 内核本来是作为硬件和各种应用软件之间的桥梁而存在的,只有内核的PC是无法使用的. 因此,会将各式各样的软件和内核组合在一起,作为一个可以运行的OS来打包,打包后的OS就被称为「Linux发行版」. 最近,把「Linux发行版」称为「Linux」的情况也比较多了. 但是,「Linux内核」只有一…
在强化学习中,设计密集.定义良好的外部奖励是很困难的,并且通常不可扩展.通常增加内部奖励可以作为对此限制的补偿,OpenAI.CMU 在本研究中更近一步,提出了完全靠内部奖励即好奇心来训练智能体的方法.在 54 个环境上的大规模实验结果表明:内在好奇心目标函数和手工设计的外在奖励高度一致:随机特征也能作为强大的基线. 通过与任务匹配的奖励函数最大化来训练智能体策略.对于智能体来说,奖励是外在的,并特定于它们定义的环境.只有奖励函数密集且定义良好时,多数的 RL 才得以成功实现,例如在电子游戏中的…