时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 万圣节的晚上,小Hi和小Ho在吃过晚饭之后,来到了一个巨大的鬼屋! 鬼屋中一共有N个地点,分别编号为1..N,这N个地点之间互相有一些道路连通,两个地点之间可能有多条道路连通,但是并不存在一条两端都是同一个地点的道路. 不过这个鬼屋虽然很大,但是其中的道路并不算多,所以小Hi还是希望能够知道从入口到出口的最短距离是多少? 提示:Super Programming Festival Algorithm. 输入 每个测试点…
上一期介绍到了SPFA算法,只是一笔带过,这一期让我们详细的介绍一下SPFA. 1 SPFA原理介绍 SPFA算法和dijkstra算法特别像,总感觉自己讲的不行,同学说我的博客很辣鸡,推荐一个视频讲解,想看点这里,算法思路如下: 1)和dijkstra一样初始化,定义一个dis[ ]数组,除了源点赋成0之外其它点都赋成正无穷,然后定义一个队列q. 2)把队列q的队首元素取出,标志为不在队中,将其作为中继点对这个队首元素的所有出边进行松弛操作(不知道松弛操作请看这里),修改完dis值后,判断每一…
首先先明确一个问题,SPFA是什么?(不会看什么看,一边学去,传送门),SPFA是bellman-ford的队列优化版本,只有在国内才流行SPFA这个名字,大多数人就只知道SPFA就是一个顶尖的高效算法,却不知道还能继续优化,这个优化虽然也没有你想的那么麻烦,只不过多了几个判断语句罢了,5分钟就能学会,但是这也得运用到分类讨论,其实SPFA有三种优化方法,效果并不是很明显. 这三个测试点通过情况所对应的分别是SPFA的三种优化方法,这个时间也是因题而异,像这道题,效果并不好,但是看别人写的博客,…
进入图之后,最短路径可谓就是一大重点,最短路径的求法有很多种,每种算法各有各的好处,你会几种呢?下面来逐个讲解. 1 floyed算法 1)明确思想及功效:在图中求最短路还是要分开说的,分别是单源最短路和多源最短路,而floyed算法是求多源最短路的,什么是多源最短路呢?简单来说就是用完算法之后能直接写出任意两点间的最短路径长度.floyed算法在本质上是动态规划思想,不断更新最短路径的值,主要思想就是不断判断两个点是否可以通过一个点中继以刷新当前两个点最短路径的估计值,直到每两个点都判断完成.…
题目链接:http://hihocoder.com/problemset/problem/1093 , 最短路的SPFA算法. 由于点的限制(10w),只能用邻接表.今天也学了一种邻接表的写法,感觉挺简单. SPFA算法其实就是用了BFS的思想,不过和BFS有所不同,SPFA算法中每个顶点可以多次加入到队列中而BFS只能加入一次.我是参考了别人的博客才弄明白这点,学习了别人的东西就要帮忙传播,附上链接:http://www.cnblogs.com/devtang/archive/2011/08/…
适用范围:给定的图存在负权边,这时类似Dijkstra等算法便没有了用武之地,而Bellman-Ford算法的复杂度又过高,SPFA算法便派上用场了. 我们约定有向加权图G不存在负权回路,即最短路径一定存在.当然,我们可以在执行该算法前做一次拓扑排序,以判断是否存在负权回路,但这不是我们讨论的重点. 算法思想:我们用数组d记录每个结点的最短路径估计值,用邻接表来存储图G.我们采取的方法是动态逼近法:设立一个先进先出的队列用来保存待优化的结点,优化时每次取出队首结点u,并且用u点当前的最短路径估计…
Bellman-Ford算法与另一个非常著名的Dijkstra算法一样,用于求解单源点最短路径问题.Bellman-ford算法除了可求解边权均非负的问题外,还可以解决存在负权边的问题(意义是什么,好好思考),而Dijkstra算法只能处理边权非负的问题,因此 Bellman-Ford算法的适用面要广泛一些.但是,原始的Bellman-Ford算法时间复杂度为O(VE),比Dijkstra算法的时间复杂度高,所以常常被众多的大学算法教科书所忽略,就连经典的<算法导论>也只介绍了基本的Bellm…
一.前提引入 我们学过了Bellman-Ford算法,现在又要提出这个SPFA算法,为什么呢? 考虑一个随机图(点和边随机生成),除了已确定最短路的顶点与尚未确定最短路的顶点之间的边,其它的边所做的都是无用的,大致描述为下图(分割线以左为已确定最短路的顶点): 其中红色部分为所做无用的边,蓝色部分为实际有用的边.既然只需用到中间蓝色部分的边,那就是SPFA算法的优势之处了. 二.算法描述 算法特点:在 Bellman-ford 算法的基础上加上一个队列优化,减少了冗余的松弛操作,是一种高效的最短…
这次整理了一下SPFA算法,首先相比Dijkstra算法,SPFA可以处理带有负权变的图.(个人认为原因是SPFA在进行松弛操作时可以对某一条边重复进行松弛,如果存在负权边,在多次松弛某边时可以更新该边.而 Dijkstra 算法如果某一条边松弛后就认为该边已经是该连接点到源点的最短路径了,不会重复检查更新. Dijkstra只能保证局部最优解而不会保证该解是全局最优解) 实现方法: 建立一个队列,初始时队列里只有起始点,再建立一个表格记录起始点到所有点的最短路径(该表格的初始值要赋为极大值,该…
说完dijkstra算法,有提到过朴素dij算法无法处理负权边的情况,这里就需要用到Bellman-Ford算法,抛弃贪心的想法,牺牲时间的基础上,换取负权有向图的处理正确. 单源最短路径 Bellman-Ford算法 思维 一张有向图,有n个点,m条边,用dis[]数组保存源点到各点的最短距离,可以通过对边进行n-1次的遍历,当其满足dis[v]>dis[u]+w的时候,就对其进行松弛更新,重复n-1次以后就能得到答案,如果n-1次以后还能继续更新,则可以判断图中出现了负权环,思路非常简短.…