课程链接:http://ufldl.stanford.edu/tutorial/supervised/LogisticRegression/ 这一节主要讲的是梯度的概念,在实验部分,比较之前的线性回归的梯度与通过定义来计算的梯度,统计二者之间的误差. 线性回归得到的是一个连续值,有时我们想得到0或者1这样的预测值,这就要用到logistic regression.因为要得到的是概率值, 之前的表示函数显然已经不合适了,这时需要用到新的函数来表示: 我们的目标就是对theta做优化,当x属于1时,…