loj2230 「BJOI2014」大融合】的更多相关文章

LCT裸题 我LCT学傻了这题明显可以树剖我不会树剖了 本来的siz是Splay上的子树和,并没有什么用. 所以每个点维护虚子树和和子树和 虚子树和即虚边连接的子树和,且只有在access和link操作更改. 注意link操作 原来的link: void link(int a,int b){makeroot(a);father[a]=b;} 现在的link: //siz[i] i的子树和 //_siz[i] i的虚子树和 void link(int a,int b){makeroot(a);fa…
LOJ#2230. 「BJOI2014」大融合 题目描述 小强要在$N$个孤立的星球上建立起一套通信系统.这套通信系统就是连接$N$个点的一个树.这个树的边是一条一条添加上去的. 在某个时刻,一条边的负载就是它所在的当前能够联通的树上路过它的简单路径的数量. 例如,在上图中,现在一共有五条边.其中,$(3,8)$这条边的负载是$6$,因为有六条简单路径$2-3-8,\ 2-3-8-7,\ 3-8,\ 3-8-7,\ 4-3-8,\ 4-3-8-7$路过了$(3,8)$. 现在,你的任务就是随着边…
题解 我现在真是太特么老年了 一写数据结构就颓废,难受 这题就是用lct维护子树 ???lct怎么维护子树 这样想,我们给每个点记录虚边所在的子树大小,只发生在Access和link的时候 这样的话我们在这两个操作的时候顺带维护一下就好了 Access的时候加上新的虚儿子,减掉变成实边的那个儿子 link直接加上虚儿子的大小即可 代码 #include <bits/stdc++.h> #define fi first #define se second #define pii pair<…
链接:https://loj.ac/problem/2230 思路: 设立siz数组保存虚点信息,sum表示总信息 维护子树信息link操作和access操作需要进行一些改动 可参考博客:https://www.cnblogs.com/GXZlegend/p/7061458.html 实现代码; #include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #include&l…
「ZJOI2016」大森林 神仙题... 很显然线段树搞不了 考虑离线操作 我们只搞一颗树,从位置1一直往后移动,然后维护它的形态试试 显然操作0,1都可以拆成差分的形式,就是加入和删除 因为保证了操作2的合法性,我们不妨先不计合法性把所有点加到树中 显然每个点要连到在这个点之前的离这个点时间上最近那个1操作的点上 然后可以发现移动时1操作相当于很多个点换根 我们可以对每个1操作建一个虚点,然后就可以很方便换根了 那么如何保证查询操作呢? 可以把每个1操作的虚点大小设成0(代表它父亲边的直接长度…
目录 @description@ @solution@ @accepted code@ @details@ @description@ 小 Y 家里有一个大森林,里面有 n 棵树,编号从 1 到 n.一开始这些树都只是树苗,只有一个节点,标号为 1.这些树都有一个特殊的节点,我们称之为生长节点,这些节点有生长出子节点的能力.小 Y 掌握了一种魔法,能让第 l 棵树到第 r 棵树的生长节点长出一个子节点.同时她还能修改第 l 棵树到第 r 棵树的生长节点.她告诉了你她使用魔法的记录,你能不能管理她…
题目链接 https://loj.ac/problem/2229 题解 评分标准提示我们可以使用随机化算法. 首先,我们为每一道编号在 \([1, m]\) 以内的题目(这些题目也对应了 \(m\) 个初始的想法)赋一个 \([0, d]\) 以内的随机权值.接下来,我们可以通过 \(O(n)\) 的递推来求出每一道编号在 \((m, n]\) 以内的题目所包含的所有想法对应权值的最小值.记第 \(i(i > m)\) 道题目包含 \(x_i\) 个不同的想法,且这些想法对应权值的最小值为 \(…
闲着没事写篇题解 传送门 LCT维护子树的模板题 树链剖分中,子树可以用dfs序维护.但LCT你总不可能动态维护dfs序啊 LCT之所以不能直接维护子树,是因为LCT只能维护它的重儿子.我们把这棵子树称为重子树. 对于其他子树,我们称为轻子树.轻子树只会储存父节点,要不试试在跑fa的时候顺便维护轻子树? 以此题为例,设s[i]为整棵子树的大小,si[i]为虚子树大小 这里的虚子树指所有虚边连向它的儿子的大小(即s)的和 不难看出,我们询问x,y时 实际上是求(si[x]+1)(si[y]+1)…
ref不是太懂-- #include <algorithm> #include <iostream> #include <cstring> #include <cstdio> using namespace std; int n, m, tot, val[200005], fa[200005], idx[200005], num, lf[200005], cnt; int ans[200005], ch[200005][2], sum[200005], rg…
问题分析 首先不难想到是虚树.建完虚树需要保持节点间原先的距离关系. 然后总距离和最小距离用树形DP求,最大距离用两遍dfs即可.注意统计的时候只对关键点进行统计. 真是麻烦 参考程序 ac的时候是loj上速度最后一页,代码第四长的-- #include <bits/stdc++.h> using namespace std; const int Maxn = 1000010; const long long INF = 1000000000010; const int MaxLog = 20…
题目链接 问题分析 比较明显的最短路模型.需要堆优化的dij.建图的时候注意细节就好. 参考程序 #include <bits/stdc++.h> #define LL long long //#define DEBUG using namespace std; const int Maxn = 10010; const int Maxm = 100010; const int Maxk = 12; struct edge { int To, Next, Cost; }; edge Edge[…
「ZJOI2016」解题报告 我大浙的省选题真是超级神仙--这套已经算是比较可做的了. 「ZJOI2016」旅行者 神仙分治题. 对于一个矩形,每次我们从最长边切开,最短边不会超过 \(\sqrt{n\times m}\),所以对于每个点跑一遍最短路就行了. 时间复杂度 \(O(n\sqrt{n}\log n+q\sqrt{n})\) \(Code\ Below:\) #include <bits/stdc++.h> #define id(i,j) (((i)-1)*m+(j)) using…
NOIP2017 普及组题目大融合 每个读者需要有某个后缀的书,可以暴力map,复杂度\(o(9*nlog(n))\),也可以反串建trie树,复杂度\(o(9*n)\). 故可以求出需要的最少的RMB数目. 显然直接求花费金币的最小值是不容易的,那么可以二分最小值. 问题变为判断性的了. 实际上S就等于一个机器人最多可以得到的RMB数... 先将行列拆开统计. 能转移到一个点的区间实际上是已知而且单调的,故可以利用单调队列来维护. 由于同种颜色的转移能多1RMB,因此每个颜色都要维护. 需要4…
[BZOJ4530][Bjoi2014]大融合 试题描述 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够 联通的树上路过它的简单路径的数量. 例如,在上图中,现在一共有了5条边.其中,(3,8)这条边的负载是6,因 为有六条简单路径2-3-8,2-3-8-7,3-8,3-8-7,4-3-8,4-3-8-7路过了(3,8). 现在,你的任务就是随着边的添加,动态的回答小强对于某些边的负载…
4530: [Bjoi2014]大融合 拿这题作为lct子树查询的练手.本来以为这会是一个大知识点,结果好像只是一个小技巧? 多维护一个虚边连接着的子树大小即可. #include<cstdio> #include<cstring> #include<algorithm> #define MN 210010 using namespace std; int p,ca,f; inline int read(){ p=;ca=getchar();f=; ;ca=getcha…
BZOJ_4530_[Bjoi2014]大融合_LCT Description 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够 联通的树上路过它的简单路径的数量. 例如,在上图中,现在一共有了5条边.其中,(3,8)这条边的负载是6,因 为有六条简单路径2-3-8,2-3-8-7,3-8,3-8-7,4-3-8,4-3-8-7路过了(3,8). 现在,你的任务就是随着边的添加,动态的回…
真是 \(6\) 道数据结构毒瘤... 开始口胡各种做法... 「HNOI2016」网络 整体二分+树状数组. 开始想了一个大常数 \(O(n\log^2 n)\) 做法,然后就被卡掉了... 发现直接维护一定是 \(O(n\log^3 n)\) 的,所以我当时选择了用 \(LCT\) 维护树上路径,跑起来比树剖可能都慢... 其实路径加单点查可以直接在 \(dfs\) 序上弄树状数组的,虽然也是 \(O(n\log^2 n)\) 的,但是肯定能通过此题... \(Code\ Below:\)…
「THUSCH 2017」大魔法师 狗体面太长,帖链接了 思路,维护一个\(1\times 4\)的答案向量表示\(A,B,C,len\),最后一个表示线段树上区间长度,然后每次的操作都有一个转移矩阵,随便搞搞就成了,卡常 Code: #include <cstdio> #include <cstring> namespace io { const int SIZE=(1<<21)+1; char ibuf[SIZE],*iS,*iT,obuf[SIZE],*oS=ob…
P4219 [BJOI2014]大融合 对于每个询问$(u,v)$所求的是 ($u$的虚边子树大小+1)*($v$的虚边子树大小+1) 于是我们再开个$si[i]$数组表示$i$的虚边子树大小,维护一下就好辣 #include<iostream> #include<cstdio> #include<cstring> using namespace std; inline void Swap(int &a,int &b){a^=b^=a^=b;} void…
P4219 [BJOI2014]大融合 题目描述 小强要在\(N\)个孤立的星球上建立起一套通信系统.这套通信系统就是连接\(N\)个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够 联通的树上路过它的简单路径的数量. 现在,你的任务就是随着边的添加,动态的回答小强对于某些边的负载的 询问. 输入输出格式 输入格式: 第一行包含两个整数 \(N, Q\),表示星球的数量和操作的数量.星球从 \(1\) 开始编号. 接下来的 \(Q\) 行,每行是如下两种…
Portal Description 初始有\(n(n\leq10^5)\)个孤立的点,进行\(Q(Q\leq10^5)\)次操作: 连接边\((u,v)\),保证\(u,v\)不连通. 询问有多少条简单路径经过边\((u,v)\). Solution 加边用lct,询问结果相当于\(p\)为根时的\((siz[p]-siz[q])\times siz[q]\). 那么如何用lct维护子树大小呢?维护\(isiz[p]\)表示\(p\)在lct上的虚子树大小,\(siz[p]\)表示\(isiz…
大融合 bzoj-4530 Bjoi-2014 题目大意:n个点,m个操作,支持:两点连边:查询两点负载:负载.边(x,y)的负载就是将(x,y)这条边断掉后能和x联通的点的数量乘以能和y联通的点的数量.数据保证任意时刻,点和边构成的都是森林或者树. 注释:$1\le n,m\le 10^5$. 想法:新学了一发LCT维护子树信息,更一道例题. 话说LCT维护子树信息应该怎么做?其实也非常简单.我们只需要将所有的信息都加到父节点上即可. 具体的,我们除了维护子树和sum之外另维护一个值other…
[BJOI2014]大融合(Link Cut Tree) 题面 给出一棵树,动态加边,动态查询通过每条边的简单路径数量. 分析 通过每条边的简单路径数量显然等于边两侧节点x,y子树大小的乘积. 我们知道裸的LCT只能维护链的信息,那么怎么维护子树大小呢?我们只需要对于节点x维护x的所有虚儿子的子树大小之和vir.那么查询的时候先split(x,y),这样x到y就成为了实链,其他与x相连的节点都是虚儿子.那么x一侧的子树大小就是vir[x]+1,y一侧的子树大小就是vir[y]+1 考虑虚子树大小…
「MoreThanJava」 宣扬的是 「学习,不止 CODE」,本系列 Java 基础教程是自己在结合各方面的知识之后,对 Java 基础的一个总回顾,旨在 「帮助新朋友快速高质量的学习」. 当然 不论新老朋友 我相信您都可以 从中获益.如果觉得 「不错」 的朋友,欢迎 「关注 + 留言 + 分享」,文末有完整的获取链接,您的支持是我前进的最大的动力! Part 1. 机器指令 上一次 我们已经了解了 二进制和 CPU 的基本原理,知道了程序运行时,CPU 每秒数以亿次.十亿次.百亿次地震荡着…
记录全思路过程和正解分析.全思路过程很 navie,不过很下饭不是嘛.会持续更新的(应该). 「CF1521E」Nastia and a Beautiful Matrix Thought. 要把所有数容纳下就一定至少有,\(\sum \limits _{i = 1 \to k} a_i < n^2\).但这个限制太弱了可恶. 考虑一种构造,一排全放数字,一排隔一个放一个.感觉可以做到最优. 接下来考虑普适化的细节,即需要满足对角线数组不同. 全放数字的就直接往上怼,不够换下一个数字,顺序填即可.…
原文地址:http://blog.codefx.org/design/architecture/junit-5-extension-model/ 原文日期:11, Apr, 2016 译文首发:Linesh 的博客:「译」JUnit 5 系列:扩展模型(Extension Model) 我的 Github:http://github.com/linesh-simplicity 概述 环境搭建 基础入门 架构体系 扩展模型(Extension Model) 条件断言 注入 动态测试 ... (如果…
我是擅(倾)长(向)把一篇文章写成杂文的.毕竟,写博客记录生活点滴,比不得发 paper,要求字斟句酌八股结构到位:风格偏杂文一点,也是没人拒稿的.这么说来,arxiv 就好比是 paper 世界的博客,整了篇论文,管他三七二十一,放到 arxiv 上自嗨一番(如果不是自鸣得意的话)再说…… 话说在优酷看了个电影<北京爱情故事>.记得当初电视剧的主题曲满大街放的时候,我还不知道有这么一电视剧:机缘巧合,某次宿舍里见朋友在看,才跟着一起看了两集,觉得不错,不过,之后自己也没再看过.今儿晚上看了同…
Cloud Insight 此前已然支持 Linux 操作系统,支持20多中数据库中间件等组件,多种操作,多种搭配,服务器监控玩的其乐无穷啊!但想想还有许多 Windows 的小伙伴没有体验过,所以在程序员哥哥的努力加班加点的赶工下,我们隆重推出了监控 Windows 系统的功能. 安装方法 在 OneAPM Ci 官网注册,登录,进入 Ci 首页 选择合适的版本(32/64),下载探针,点击安装 或者下载探针,在 cmd.exe 里面执行命令行进行安装 是不是简单的让人无法相信,只要这样简单的…
本文由CrowHawk翻译,是Java GC调优的经典佳作. 本文翻译自Sangmin Lee发表在Cubrid上的"Become a Java GC Expert"系列文章的第三篇<How to Tune Java Garbage Collection>,本文的作者是韩国人,写在JDK 1.8发布之前,虽然有些地方有些许过时,但整体内容还是非常有价值的.译者此前也看到有人翻译了本文,发现其中有许多错漏生硬和语焉不详之处,因此决定自己翻译一份,供大家分享. 本文是"…
三年多前Runner团队在德国汉堡的骇客松上第一次发布了Sketch插件Runner的beta版本.从那以后,这个团队的目标一直很清晰: 创造一个加速设计工作流的工具. 他们只给Runner添加真正能帮设计师工作提速的功能,而非来者不拒.今天,Runner团队发布了史上最大一次版本更新:Runner Pro. 相关参数 依赖工具:Sketch 插件官网:Runner Pro → The Essential Sketch Plugin 插件试用:Download Runner Pro → The…