数学图形(2.6)Satellit curve】的更多相关文章

这曲线有点像鼓,绕在球上两头是开口的. #http://www.mathcurve.com/courbes3d/satellite/satellite.shtml vertices = t = to (*PI) r = k = rand2() a = rand2(PI*0.1, PI*1.9) x = r*(cos(a)*cos(t)*cos(k*t) - sin(t)*sin(k*t)) y = r*(cos(a)*sin(t)*cos(k*t) + cos(t)*sin(k*t)) z =…
在我关于数学图形的博客中,一开始讲曲线的生成算法.然后在最近的章节中介绍了圆环,还介绍了螺旋管以及海螺的生成算法.一类是曲线,一类是环面,为什么不将曲线变成环的图形,毕竟曲线看上去太单薄了,这一节我将介绍如何依照曲线(Curve)生成其相应的曲面管. 相关软件参见:数学图形可视化工具,使用自己定义语法的脚本代码生成数学图形. 在圆柱面这一节的最后,我提供了两种算法,以生成朝向任意方向的圆柱面,一种是极坐标原理,另一种是矩阵原理.这一节也是采用这两个原理生成曲面管,因为由曲线生成的曲面管就是若干个…
不知道这个曲线和那个运动品牌背靠背有什么关系.阿迪原先的商标是个三叶草,难道背靠背也是由数学图形来的? 以下是维基上的解释. In geometry, the kappa curve or Gutschoven's curve is a two-dimensional algebraic curve resembling the Greek letter ϰ (kappa). The kappa curve was first studied by Gérard van Gutschoven a…
这是一种形似乎头颅的曲线.这种曲线让我想起读研的时候,搞的医学图像三维可视化.那时的原始数据为脑部CT图像.而三维重建中有一种方式是面绘制,是将每一幅CT的颅骨轮廓提取出来,然后一层层地罗列在一起,生成一个3d的MESH.我的研究口味重吧.这里,我也会将一层层的头颅线转化为3D的MESH,也就是一个天灵盖的图形模型. 头颅线的方程式为: (x2 + y2)2 - 2 y2 (y + x) + a2 (b - 1) x2 + (1 - a2) x2 = 0. 相关软件参见:数学图形可视化工具,使用…
毛雷尔玫瑰,也有的翻译是毛瑞尔,它是一种很漂亮的图形.玫瑰线的变异品种. 我没有找到其中文的解释,有兴趣可以看下维基上的相关页面. A Maurer rose of the rose r = sin(nθ) consists of the 360 lines successively connecting the above 361 points. Thus a Maurer rose is a polygonal curve with vertices on a rose. A Maurer…
WHY数学图形可视化工具 软件下载地址:http://files.cnblogs.com/WhyEngine/WhyMathGraph.zip 源码下载地址: http://pan.baidu.com/s/1jG9QKq6 软件的开发语言是C++,开发环境是VS2008,渲染使用的是D3D9 QQ交流群: 367752815 该软件是之前发布的WHY数学表达式的3D可视化最新版本 该软件用于将数学表达式以图形的形式显示出来.软件中定义一套简单易学的脚本语言,用于描述数学表达式.使用时需要先要将数…
昨天IPhone6在国内发售了,我就顺手发布个关于肾的图形.Nephroid中文意思是肾形的.但是这种曲线它看上去却不像个肾,当你看到它时,你觉得它像什么就是什么吧. The name nephroid (meaning 'kidney shaped') was used for the two-cusped epicycloid by Proctor in 1878. The nephroid is the epicycloid formed by a circle of radius a r…
前面章节中讲了贝塞尔(Bézier)曲线,而贝塞尔曲面是对其多一个维度的扩展.其公式依然是曲线的公式: . 而之所以由曲线变成曲面,是将顶点横向连了再纵向连. 很多计算机图形学的教程都会有贝塞尔曲面的DEMO.而这里,我依然是使用我制定的脚本代码生成贝塞尔曲面.代码中的控制顶点坐标为随机数生成,所以每次生成的曲面图形都不一样. 相关软件参见:数学图形可视化工具,使用自己定义语法的脚本代码生成数学图形.该软件免费开源.QQ交流群: 367752815 二次贝塞尔曲面: 需要生成3*3个控制顶点 v…
贝塞尔曲线又称贝兹曲线或贝济埃曲线,是由法国数学家Pierre Bézier所发现,由此为计算机矢量图形学奠定了基础.它的主要意义在于无论是直线或曲线都能在数学上予以描述. 上一节讲的是高次方程曲线,其实贝塞尔曲线就是高次函数曲线.研究贝塞尔曲线的人最初是按照已知曲线参数方程来确定四个点的思路设计出这种矢量曲线绘制法.涕淌为了向大家 介绍贝塞尔曲线的公式,也故意把问题的已知和所求颠倒了一下位置:如果已知一条曲线的参数方程,系数都已知,并且两个方程里都含有一个参数t,它的值介于 0.1之间,表现形…
这是一种挺漂亮的曲面图形,可惜没有找到太多的相关解释. In differential equations, a breather surface is a mathematical surface relating to breathers. 其数学公式很复杂,参数方程为: where 0 < a < 1. 维基的相关网址为:http://en.wikipedia.org/wiki/Breather_surface 使用自己定义语法的脚本代码生成数学图形.相关软件参见:数学图形可视化工具,该…
Kuen Surface应该又是一个以数学家名字命名的曲面.本文将展示几种Kuen Surface的生成算法和切图,其中有的是标准的,有的只是相似.使用自己定义语法的脚本代码生成数学图形.相关软件参见:数学图形可视化工具,该软件免费开源.QQ交流群: 367752815 公式1 #http://jalape.no/math/kuentxt vertices = D1: D2: u = from (-4.5) to (4.5) D1 v = from (PI*0.01) to (PI*0.99)…
这是一个姓Boy的人发现的,所以取名为Boy surface.该图形与罗马图形有点相似,都是三分的图形.它甚至可以说是由罗马曲面变化而成的. 本文将展示几种Boy曲面的生成算法和切图,使用自己定义语法的脚本代码生成数学图形.相关软件参见:数学图形可视化工具,该软件免费开源.QQ交流群: 367752815 In geometry, Boy's surface is an immersion of the real projective plane in 3-dimensional space f…
SineSurface直译为正弦曲面.这有可能和你想象的正弦曲线不一样.如果把正弦曲线绕Y轴旋转,得到的该是正弦波曲面.这个曲面与上一节中的罗马曲面有些相似,那个是被捏过的正四面体,这个则是个被捏过正方体. 本文将展示SineSurface与粽子曲面的生成算法和切图,使用自己定义语法的脚本代码生成数学图形.相关软件参见:数学图形可视化工具,该软件免费开源.QQ交流群: 367752815 这是从http://mathworld.wolfram.com/SineSurface.html上找到的一种…
罗马曲面,像是一个被捏扁的正四面体. 本文将展示罗马曲面的生成算法和切图,使用自己定义语法的脚本代码生成数学图形.相关软件参见:数学图形可视化工具,该软件免费开源.QQ交流群: 367752815 维基上关于罗马曲面的解释如下: The Roman surface or Steiner surface (so called because Jakob Steiner was in Rome when he thought of it) is a self-intersecting mapping…
克莱因瓶是一种内外两面在同一个曲面上的图形. 在数学领域中,克莱因瓶(德语:Kleinsche Flasche)是指一种无定向性的平面,比如二维平面,就没有“内部”和“外部”之分.克莱因瓶最初的概念提出是由德国数学家菲利克斯·克莱因提出的.克莱因瓶和我上一篇讲的莫比乌斯带非常相像.一个是内外两面是在同一个曲面上,另一个是里外两面在同一个曲面上. 克莱因瓶的形状是,一个瓶子底部有一个洞,现在延长瓶子的颈部,并且扭曲地进入瓶子内部,然后和底部的洞相连接. 下面将展示几种莫比乌斯带的生成算法和切图,使…
莫比乌斯带,又被译作:莫比斯环,梅比斯環或麦比乌斯带.是一种拓扑学结构,它只有一个面(表面),和一个边界.即它的正反两面在同一个曲面上,左右两个边在同一条曲线上.看它的名字很洋气,听它的特征很玄乎,实际上实现起来很容易,就是将一个纸条拧一下,然后粘起两头,所生成的带.公元1858年,德国数学家莫比乌斯(Mobius,1790-1868)发现:把一根纸条扭转180°后,两头再粘接起来做成的纸带圈,具有魔术般的性质.普通纸带具有两个面(即双侧曲面),一个正面,一个反面,两个面可以涂成不同的颜色:而这…
相关软件参见:数学图形可视化工具,使用自己定义语法的脚本代码生成数学图形.该软件免费开源.QQ交流群: 367752815 Sin曲线 vertices = x = *PI) to (*PI) y = sin(x) 震荡sin曲线 vertices = x = *PI) to (*PI) y = exp(abs(x)/)*sin(x) 极限震荡sin曲线 vertices = x = ) to y = x*sin(/x) x = x* y = y* SIN曲线的变异 #http://www.ma…
在前面的章节数学图形(1.13) 利萨茹曲线中,写的是二维的利萨茹曲线,这一节,将其变为3D图形. #http://www.mathcurve.com/courbes3d/lissajous3d/lissajous3d.shtml vertices = a = rand2(, ) b = rand2(, ) c = rand2(, ) k = rand2() n = rand2() m = rand2() t = to (*PI) x = a*sin(k*t) y = b*sin(n*t) z…
这个曲线与之前的数学图形(2.7)sphere sine wave很相似.而且个人觉得从其公式上看sphere sine wave更应该叫做球面正弦曲线.当然从渲染的曲线图上看,它是非常明显的贴在球上的正弦曲线. #http://www.mathcurve.com/courbes3d/sinusoidespherique/sinusoidespherique.shtml vertices = t = to (*PI) a = n = rand2() k = rand2() w = a/sqrt(…
它也算是一种螺线吧 相关软件参见:数学图形可视化工具,使用自己定义语法的脚本代码生成数学图形.该软件免费开源.QQ交流群: 367752815 #http://www.mathcurve.com/courbes2d/cochleoid/cochleoid.shtml vertices = t = *PI) to (*PI) a = x = a*sin(t)/t y = a*( - cos(t))/t…
貌似由双曲线组成的图形.有时会像个自行车的轮子. 相关软件参见:数学图形可视化工具,使用自己定义语法的脚本代码生成数学图形.该软件免费开源.QQ交流群: 367752815 #http://www.mathcurve.com/courbes2d/epi/epi.shtml vertices = t = to (*PI) a = m = rand_int2(, ) n = rand_int2(, ) p = a/cos(m/n*t) p = limit(p, -, ) x = p*cos(t) y…
像瓜子样的曲线 相关软件参见:数学图形可视化工具,使用自己定义语法的脚本代码生成数学图形.该软件免费开源.QQ交流群: 367752815 #http://www.mathcurve.com/courbes2d/clairaut/clairaut.shtml vertices = t = to (*PI) r = n = rand2() p = r*pow(sin(t), n) x = p*cos(t) y = p*sin(t) 面: vertices = D1: D2: u = to (*PI…
通过这种曲线可以看到一种由8到0的过度 相关软件参见:数学图形可视化工具,使用自己定义语法的脚本代码生成数学图形.该软件免费开源.QQ交流群: 367752815 #http://www.mathcurve.com/courbes2d/cassini/cassini.shtml vertices = t = from (-PI) to (PI) a = b = rand2(, *a) e = b/a; p = a*sqrt(cos(*t) + sqrt(e^ - sin(*t)^)) x = p…
有N个叶子的草 相关软件参见:数学图形可视化工具,使用自己定义语法的脚本代码生成数学图形.该软件免费开源.QQ交流群: 367752815 vertices = t = to (*PI) r = n = rand_int2(, ) p = + cos(n*t) + sin(n*t)^ x = p*cos(t) y = p*sin(t) N叶草面_1 vertices = D1: D2: u = to (PI*) D1 v = from 0.0 to 1.0 D2 r = n = rand_int…
一种左右对称的螺线 相关软件参见:数学图形可视化工具,使用自己定义语法的脚本代码生成数学图形.该软件免费开源.QQ交流群: 367752815 vertices = t = *PI) to (*PI) a = k = rand2() x = a*(t*cos(t) + k*t) y = a*t*sin(t) K = 0.2 K = 0.5 K = 1.0 K = 1.2 K = 1.5 K = 5…
它是一种螺线,其特点是细分时无限递归. 相关软件参见:数学图形可视化工具,使用自己定义语法的脚本代码生成数学图形.该软件免费开源.QQ交流群: 367752815 vertices = t = *PI) to (*PI) a = rand2() b = rand2() k = rand2(0.1, 0.8) r = p = r*a/(a*ch(k*t) + b*sh(k*t)) x = p*sin(t) y = p*cos(t)…
这是个类似巴黎铁塔的曲线. #http://www.mathcurve.com/courbes2d/tn/tn.shtml vertices = t = to (PI*0.999) a = s = sin(t) c = cos(t) y = -a*(c*c + ln(s)) x = a*s*c y = limit(y, -, ) 面的形式: vertices = D1: D2: u = from (0.01*PI) to (PI*0.99) D1 v = to D2 s = sin(u) c =…
一种很酷的螺线,看着有种分形学的感觉.参考自http://www.2dcurves.com/spiral/spirallos.html 其数学的极坐标表达式如下: 我的脚本代码如下: #http://www.2dcurves.com/spiral/spirallos.html vertices = t = ) to (*PI) a = rand2(, ) b = rand2(, ) c = rand2(-, ) d = rand2() f = rand2() m = abs(cos(d*t))^…
从http://mathworld.wolfram.com/SphericalHelix.html上找到如下一些关于该曲线的说明,不过似乎他的公式和我的脚本完全是两个东西.. The tangent indicatrix of a curve of constant precession is a spherical helix. The equation of a spherical helix on a sphere with radius  making an angle  with th…
在球上以SIN曲线的轨迹游走. #http://www.mathcurve.com/courbes3d/couronnetangentoidale/couronnetangentoidale.shtml vertices = t = to (*PI) a = n = rand2() x = a*sin(n*t)*cos(t) y = a*sin(n*t)*sin(t) z = a*cos(n*t) 有SIN的就会有与它相反的COS的: #http://www.mathcurve.com/cour…