Uva12230Crossing Rivers (数学期望)】的更多相关文章

问题: You live in a village but work in another village. You decided to follow the straight path between your house (A) and the working place (B), but there are several rivers you need to cross. Assume B is to the right of A, and all the rivers lie bet…
Uva12230Crossing Rivers 问题: You live in a village but work in another village. You decided to follow the straight path between your house (A) and the working place (B), but there are several rivers you need to cross. Assume B is to the right of A, an…
Crossing Rivers                                                                                      Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Problem Description You live in a village but work in another vil…
你住在村庄A,每天需要过很多条河到另一个村庄B上班,B在A的右边,所有的河都在A,B之间,幸运的是每条船上都有自由移动的自动船, 因此只要到达河左岸然后等船过来,在右岸下船,上船之后船的速度不变.现在问从A到B的期望时间是多少,假设在出发时船的位置都是 随机分布.人在 陆地上行走的速度为1. 根据数学期望的线性,过每条河的时间为L/v(到河边船刚好开)到3L/v(到河边船刚好开走)的均匀分布,因此期望过河时间为 (L+3L/v)/2=(2*L/v) 加上 D-sum(L) . #include…
题目链接 题意翻译 一个人每天需要从家去往公司,然后家与公司的道路是条直线,长度为 \(D\). 同时路上有 \(N\) 条河,给出起点和宽度\(W_i\) , 过河需要乘坐速度为\(V_i\) 的渡船; 船在河中的位置随机,固定往返时间. 且该人在陆地上行走速度为 1 .求该人去公司的路途的期望时间. Solution 让我多了一些对于期望的了解. 考虑过每条河流的最坏情况和最好情况. 1.最坏情况: \((3*W_i)/V_i\) ; 此时即船刚刚走. 2.最好情况: \(W_i/V_i\)…
数学期望 P=Σ每一种状态*对应的概率. 因为不可能枚举完所有的状态,有时也不可能枚举完,比如抛硬币,有可能一直是正面,etc.在没有接触数学期望时看到数学期望的题可能会觉得很阔怕(因为我高中就是这么认为的,对不起何老板了QwQ),避之不及. 但是现在发现大多数题就是手动找公式或者DP推出即可,只要处理好边界,然后写好方程,代码超级简短.与常规的求解不同,数学期望经常逆向推出. 比如常规的dp[x]可能表示到了x这一状态有多少,最后答案是dp[n].而数学期望的dp[x]一般表示到了x这一状态还…
Problem Description   You live in a village but work in another village. You decided to follow the straight path between your house (A) and the working place (B), but there are several rivers you need to cross. Assume B is to the right of A, and all…
题意:你要从A到B去上班,然而这中间有n条河,距离为d.给定这n条河离A的距离p,长度L,和船的移动速度v,求从A到B的时间的数学期望. 并且假设出门前每条船的位置是随机的,如果不是在端点,方向也是不定的,你在陆地行走速度为1,输入保证河在AB之前,并且不会重叠. 析:一看这个题,好像不会啊...这怎么求,这么乱,这么复杂... 但是仔细一想求时间期望,不就是在过河的地方时间不是固定的么,只要求出过河的时间的数学期望,利用数学期望的线性,加起来就OK了. 这样一想感觉就不乱了,那么怎么求每个河的…
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=3382 题意: 你住在村庄A,每天需要过很多条河到另一个村庄B上班.B在A的右边,所有的河都在中间.幸运的是,每条河上都有匀速移动的自动船,因此每当到达一条河的左岸时,只需等船过来,载着你过河,然后在右岸下船.你很瘦,因此上船之后船速不变.日复一日,年复一年,你问自己:从A到B,平均…
A - 容斥原理(CodeForces - 451E) 二进制状态压缩暴力枚举哪几个花选的个数超过了总个数,卢卡斯定理求组合数,容斥原理求答案 可以先把每个花的数量当成无限个,这样就是一个多重集的组合数$ans=C_{n+m-1}^{n-1}$ 所以要减去有一种花超过花的数量的情况,加上有两种花超过花的数量的情况,减去有三种花超过花的数量的情况... 最后$ans=C_{n+m-1}^{n-1}-\sum_{i=1}^{n}C_{n+m-a_{i}-2}^{n-1}+\sum_{i=1}^{n}…
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3143 分析: 易得如果知道了每条边经过的数学期望,那就可以贪心着按每条边的期望的大小赋值,所以问题就是如何求每条边的期望. 直接求没办法求的,可以先求出每个点经过的期望. 易得f[i]=∑f[j]/d[j] j->i有边 特殊的,对于起点,因为刚开始就在,所以应该是f[1]=1+∑f[j]/d[j]:对于终点,到了终点后不能再到其他节点,所以对其他边并没有贡献,所以f[n]=0 然后…
题目链接 题意 : 一个m面的骰子,掷n次,问得到最大值的期望. 思路 : 数学期望,离散时的公式是E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn) p(xi)的是所有最大值是xi的情况数/总情况数一共是m^n种,掷n次,所有最大值是xi的情况数应该是xi^n,但是这里边却包含着最大值非xi且不超过xi的种数,所以再减去最大值是xi-1或者最大值不超过这个的情况数.即sum += xi * (xi^n-(xi-1)^n)/m^n,但是这样求肯定是不行,因为m…
数学期望. 过每条河的时间的可能在[L/v,3*L/v]间均匀分布,数学期望为2*L/v. 然后在加上在陆上走的时间. #include<cstdio> #include<algorithm> #include<cstring> using namespace std; int n,d,p,L,v,kase; double res; int main() { && d) { res=; ;i<=n;i++) { scanf("%d%d%d…
题1: Uva 1636 Headshot 题目大意: 给出一个000111序列,注意实际上是环状的.问是0出现的概率大,还是当前是0,下一个还是0的概率大. 问题比较简单,注意比较大小: A/C > B/D  <=> A * D > B * C #include <cstdio> #include <cstring> #include <cstdlib> #include <algorithm> #include <iostr…
The number of steps nid=24#time" style="padding-bottom:0px; margin:0px; padding-left:0px; padding-right:0px; color:rgb(83,113,197); text-decoration:none; padding-top:0px"> Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^ 题目描写叙述 Mary…
[BZOJ2134]单位错选(数学期望,动态规划) 题面 BZOJ 题解 单独考虑相邻的两道题目的概率就好了 没了呀.. #include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #include<cmath> #include<algorithm> #include<set> #include<map> #include&l…
[BZOJ1415][NOI2005]聪聪和可可(动态规划,数学期望) 题面 BZOJ 题解 先预处理出当可可在某个点,聪聪在某个点时 聪聪会往哪里走 然后记忆化搜索一下就好了 #include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #include<cmath> #include<algorithm> #include<set> #i…
[Luogu1291]百事世界杯之旅(动态规划,数学期望) 题面 洛谷 题解 设\(f[i]\)表示已经集齐了\(i\)个名字的期望 现在有两种方法: 先说我自己的: \[f[i]=f[i-1]+1+(1-p)(1*p^1+2*p^2+....)\] 其中\(p=\frac{i-1}{n}\) 为什么,很简单 首先要多收集一个,期望\(+1\)是显然的 但是还可能一直买到了已经有的名字中的一个 有\(p\)的概率多买一个 \(p^2\)的概率多买两个 这样无穷的算下去 然后对于后面那个式子 做两…
[BZOJ4872]分手是祝愿(动态规划,数学期望) 题面 BZOJ 题解 对于一个状态,如何求解当前的最短步数? 从大到小枚举,每次把最大的没有关掉的灯关掉 暴力枚举因数关就好 假设我们知道了当前至少要关\(tot\)次 如果一个灯被动两次以上是没有任何意义的 所以,相当于,要动的灯只有\(tot\)个 其他的是没有任何意义的 所以,题面可以变为: 现在有\(tot\)个\(1\),\(n-tot\)个\(0\) 每次随机选择一个数将其异或\(1\) 求最终变为\(0\)的期望 我们现在考虑一…
[BZOJ3143]游走(高斯消元,数学期望) 题面 BZOJ 题解 首先,概率不会直接算... 所以来一个逼近法算概率 这样就可以求出每一条边的概率 随着走的步数的增多,答案越接近 (我卡到\(5000\)步可以拿\(50\)分) #include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #include<cmath> #include<algorith…
[BZOJ1076]奖励关(动态规划,数学期望) 题面 懒,粘地址 题解 我也是看了题解才会做 看着数据范围,很容易想到状压 然后,设\(f[i][j]\)表示当前第\(i\)轮,状态为\(j\)的期望 枚举当前掉出来哪一个物品 然后....怎么转移??? 当前物品如果原来出现过,,我也不知道出现了几次呀... 根本找不到上一次的状态 然后\(hzwer\)告诉我们,倒着来 设这样的话,状态倒过来推,我们就只需要往上加东西的状态即可 #include<iostream> #include<…
一.数学期望 1.离散型随机变量的数学期望 设X为离散随机变量,其概率分布为:P(X=xk)=pk 若无穷级数$\sum_{k=1}^{+\infty}x_kp_k$绝对收敛 (即满足$\sum_{k=1}^{+\infty}|x_kp_k|$收敛) 则称其为X的数学期望,记作$E(X)=\sum_{k=1}^{+\infty}x_kp_k$ 二项分布,X~B(n,p),E(X)=np 泊松分布,X~P(λ),E(X)=λ 超几何分布,X~H(N,M,n),E(X)=nM/N 几何分布,X~GE…
对长为L的棒子随机取一点分割两部分,抛弃左边一部分,重复过程,直到长度小于d,问操作次数的期望. 区域赛的题,比较基础的概率论,我记得教材上有道很像的题,对1/len积分,$ln(L)-ln(d)+1$. /** @Date : 2017-10-06 14:32:03 * @FileName: HDU 5984 数学期望.cpp * @Platform: Windows * @Author : Lweleth (SoungEarlf@gmail.com) * @Link : https://gi…
题意:给定一个整数 n ,然后你要把它变成 1,变换操作就是随机从小于等于 n 的素数中选一个p,如果这个数是 n 的约数,那么就可以变成 n/p,否则还是本身,问你把它变成 1 的数学期望是多少. 析:一个很明显的期望DP,dp[i] 表示把 i 变成 1 的期望是多少,枚举每一种操作,列出表达式,dp[i] = ∑dp[i/x]/q + p/q*dp[i] + 1,其中 x 表示枚举的素数,然后 p 表示不是 i 的约数个数,q 是小于等于 n 的素数个数,然后变形,可以得到 dp[i] =…
题意:某个人每天晚上都玩游戏,如果第一次就䊨了就高兴的去睡觉了,否则就继续直到赢的局数的比例严格大于 p,并且他每局获胜的概率也是 p,但是你最玩 n 局,但是如果比例一直超不过 p 的话,你将不高兴的去睡觉,并且以后再也不玩了,现在问你,平均情况下他玩几个晚上游戏. 析:先假设第一天晚上就不高兴的去睡觉的概率是 q,那么有期望公式可以得到 E = q + (1-q) * (E + 1),其中 E 就是数学期望,那么可以解得 E = 1/ q,所以答案就是 1 / q,这个公式是什么意思呢,把数…
题意:有两个盒子各有n个糖,每次随机选一个(概率分别为p,1-p),然后吃掉,直到有一次,你打开盒子发现,没糖了! 输入n,p,求另一个盒子里糖的个数的数学期望. 析:先不说这个题多坑,首先要用long double来实现高精度,我先用的double一直WA,后来看了题解是用long double, 改了,可一直改不对,怎么输出结果都是-2.00000,搞了一晚上,真是无语,因为我输入输出数据类型是long double, 结果一直不对 ,可能是我的编译器是C89的吧,和C语言,输入输出格式不同…
Play the Dice Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Submission(s): 3648    Accepted Submission(s): 1181Special Judge Problem Description There is a dice with n sides, which are numbered from 1,2,...,…
题目 传送门:QWQ 分析 数学期望 用$ dp[i][j] $表示发现了在$ j $个子系统里面发现了$ i $个bug到$ s $个子系统里面发现了$ n $个bug需要的期望天数. $ dp[0][0] $就是答案. 然后分类一下,可以转移到$ dp[i][j] $无非就是$ dp[i+1][j+1] $ $ dp[i][j+1] $ $ dp[i+1][j] $ $ dp[i][j] $ 各自分别算一下概率,比如从$ dp[i][j] $转移过来的话概率是$ \frac{i}{n} \t…
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=4514 题意: 有两个盒子各有n(1≤n≤2e5)个糖,每天随机选一个(概率分别为p,1-p),然后吃一颗糖.直到有一天,打开盒子一看,没糖了!输入n,p,求此时另一个盒子里糖的个数的数学期望. 分析: 根据期望的定义,不妨设最后打开第1个盒子,此时第2个盒子有i颗,则这之前打开过n…
[HDU4652]Dice(数学期望,动态规划) 题面 Vjudge 有一个\(m\)面骰子 询问,连续出现\(n\)个相同的时候停止的期望 连续出现\(n\)个不同的时候停止的期望 题解 考虑两种分开询问来算. 第一种: 设\(f[i]\)表示已经有连续的\(i\)个相同时,到达目标状态的期望. \[f[i]=\frac{1}{m}f[i+1]+\frac{m-1}{m}f[1]+1\] 相邻两项作差,得到 \[m(f[i+1]-f[i])=f[i+2]-f[i+1]\] 按照顺序列出来 \(…