EM算法定义及推导】的更多相关文章

EM算法是一种迭代算法,传说中的上帝算法,俗人可望不可及.用以含有隐变量的概率模型参数的极大似然估计,或极大后验概率估计 EM算法定义 输入:观测变量数据X,隐变量数据Z,联合分布\(P(X,Z|\theta)\) 输出:模型参数\(\theta\) (1)选择初始模型参数\(\theta^{(0)}\),开始迭代 (2)E步:记\(\theta^{i}\)为第i次迭代参数\(\theta\)的估计值,计算在第i次迭代的期望\[Q(\theta,\theta^{(i)}) = E(logP(x,…
EM算法(Expectation-maximization),又称最大期望算法,是一种迭代算法,用于含有隐变量的概率模型参数的极大似然估计(或极大后验概率估计) 从定义可知,该算法是用来估计参数的,这里约定参数为  .既然是迭代算法,那么肯定有一个初始值,记为  ,然后再通过算法计算  通常,当模型的变量都是观测变量时,可以直接通过极大似然估计法,或者贝叶斯估计法估计模型参数.但是当模型包含隐变量时,就不能简单的使用这些估计方法 举个具体的栗子: 永远在你身后:Matplotlib输出动画实现K…
EM算法,全称Expectation Maximization Algorithm,译作最大期望化算法或期望最大算法,是机器学习十大算法之一,吴军博士在<数学之美>书中称其为“上帝视角”算法,其重要性可见一斑. EM算法是一种迭代算法,用于含有隐变量(hidden variable)的概率参数模型的最大似然估计或极大后验概率估计.它与极大似然估计的区别就是它在迭代过程中依赖极大似然估计方法.极大似然估计是在模型已知的情况下,求解模型的参数$\theta$,让抽样出现的概率最大.类似于求解一元方…
# coding:utf-8 import numpy as np def qq(y,alpha,mu,sigma,K,gama):#计算Q函数 gsum=[] n=len(y) for k in range(K): gsum.append(np.sum([gama[j,k] for j in range(n)])) return np.sum([g*np.log(ak) for g,ak in zip(gsum,alpha)])+\ np.sum([[np.sum(gama[j,k]*(np.…
概述 EM算法是一种迭代算法,用于含有隐变量(hidden variable)的概率模型参数的极大似然估计,或极大后验概率估计. EM算法的每次迭代由两步组成:E步,求期望(expectation):M步,求极大( maximization ),所以这一算法称为期望极大算法(expectation maximization algorithm),简称EM算法.  EM算法的引入 一般地,用Y表示观测随机变量的数据,Z表示隐随机变量的数据.Y和Z连在一起称为完全数据( complete-data…
EM算法(Expectation Maximization Algorithm) 1. 前言   这是本人写的第一篇博客(2013年4月5日发在cnblogs上,现在迁移过来),是学习李航老师的<统计学习方法>书以及斯坦福机器学习课Andrew Ng的EM算法课后,对EM算法学习的介绍性笔记,如有写得不恰当或错误的地方,请指出,并多多包涵,谢谢.另外本人数学功底不是很好,有些数学公式我会说明的仔细点的,如果数学基础好,可直接略过. 2.基础数学知识   在正式介绍EM算法之前,先介绍推导EM算…
猴子吃果冻 博客园 首页 新随笔 联系 管理 订阅 随笔- 35  文章- 0  评论- 3  4-EM算法原理及利用EM求解GMM参数过程   1.极大似然估计 原理:假设在一个罐子中放着许多白球和黑球,并假定已经知道两种球的数目之比为1:3但是不知道那种颜色的球多.如果用放回抽样方法从罐中取5个球,观察结果为:黑.白.黑.黑.黑,估计取到黑球的概率为p; 假设p=1/4,则出现题目描述观察结果的概率为:(1/4)4 *(3/4) = 3/1024 假设p=3/4,则出现题目描述观察结果的概率…
EM算法也称期望最大化(Expectation-Maximum,简称EM)算法,它是一个基础算法,是很多机器学习领域的基础,比如隐式马尔科夫算法(HMM),LDA主题模型的变分推断算法等等.本文对于EM算法,我们主要从以下三个方向学习: 1,最大似然 2,EM算法思想及其推导 3,GMM(高斯混合模型) 1,最大似然概率 我们经常会从样本观察数据中,找到样本的模型参数.最常用的方法就是极大化模型分布的对数似然函数.怎么理解呢?下面看我一一道来. 假设我们需要调查我们学习的男生和女生的身高分布.你…
EM算法一般表述:       当有部分数据缺失或者无法观察到时,EM算法提供了一个高效的迭代程序用来计算这些数据的最大似然预计.在每一步迭代分为两个步骤:期望(Expectation)步骤和最大化(Maximization)步骤,因此称为EM算法. 如果所有数据Z是由可观測到的样本X={X1, X2,--, Xn}和不可观測到的样本Z={Z1, Z2,--, Zn}组成的,则Y = X∪Z.EM算法通过搜寻使所有数据的似然函数Log(L(Z; h))的期望值最大来寻找极大似然预计,注意此处的h…
今天不太想学习,炒个冷饭,讲讲机器学习十大算法里有名的EM算法,文章里面有些个人理解,如有错漏,还请读者不吝赐教. 众所周知,极大似然估计是一种应用很广泛的参数估计方法.例如我手头有一些东北人的身高的数据,又知道身高的概率模型是高斯分布,那么利用极大化似然函数的方法可以估计出高斯分布的两个参数,均值和方差.这个方法基本上所有概率课本上都会讲,我这就不多说了,不清楚的请百度. 然而现在我面临的是这种情况,我手上的数据是四川人和东北人的身高合集,然而对于其中具体的每一个数据,并没有标定出它来自“东北…