简化版SMO算法标注】的更多相关文章

''' 随机选择随机数,不等于J ''' def selectJrand(i,m): j=i #we want to select any J not equal to i while (j==i): j = int(random.uniform(0,m)) # 一直在挑选随机数j,直到不等于i,随机数的范围在0~m return j # 返回挑选好的随机数 ''' 门限函数 ''' def clipAlpha(aj,H,L): # 最大不能超过H,最小不能低于L if aj > H: aj =…
SMO:序列最小优化 SMO算法:将大优化问题分解为多个小优化问题来求解 SMO算法的目标是求出一系列的alpha和b,一旦求出这些alpha,就很容易计算出权重向量w,并得到分隔超平面 工作原理:每次循环选择两个alpha进行优化处理,一旦找出一对合适的alpha,那么就增大一个同时减少一个 这里指的合适必须要符合一定的条件 a. 这两个alpha必须要在间隔边界之外 b. 这两个alpha还没有进行过区间化处理或者不在边界上 SMO 伪代码大致如下: 创建一个 alpha 向量并将其初始化为…
SVM有很多实现,现在只关注其中最流行的一种实现,即序列最小优化(Sequential Minimal Optimization,SMO)算法,然后介绍如何使用一种核函数(kernel)的方式将SVM扩展到更多的数据集上. 1.基于最大间隔分隔数据 几个概念: 1.线性可分(linearly separable):对于图6-1中的圆形点和方形点,如果很容易就可以在图中画出一条直线将两组数据点分开,就称这组数据为线性可分数据 2.分隔超平面(separating hyperplane):将数据集分…
Platt SMO算法是通过一个外循环来选择第一个alpha值的,并且其选择过程会在两种方式之间进行交替: 一种方式是在所有数据集上进行单遍扫描,另一种方式则是在非边界alpha中实现单遍扫描. 所谓非边界alpha指的就是那些不等于边界0或者C的alpha值.对整个数据集的扫描相当容易,而实现非边界alpha值的扫描时,首先需要建立这些alpha值的列表,然后再对这个表进行遍历.同时,该步骤会跳过那些已知的不会改变的alpha值,即. 在选择第一个alpha值后,算法会通过一个内循环来选择第二…
本文参考自:https://www.zhihu.com/question/40546280/answer/88539689 解决svm首先将原始问题转化到对偶问题,而对偶问题则是一个凸二次规划问题,理论上你用任何一个解决凸二次规划的软件包都可以解决,但是这样通常来说很慢,大数据情况下尤其不实际, smo是微软研究院的大神发明的解决svm对偶问题的优化算法,可以更快找到好的解.通常而言分简化版和优化版smo算法. 简化版:每次迭代随机选取alpha_i和alpha_j,当然其中要有一个违反kkt条…
这算是我真正意义上认真去读的第一篇ML论文了, but, 我还是很多地方没有搞懂, 想想, 缓缓吧, 还是先熟练调用API 哈哈 原论文地址: https://www.microsoft.com/en-us/research/publication/sequential-minimal-optimization-a-fast-algorithm-for-training-support-vector-machines/ 求解w, b 这其实是一个在运筹学里面的经典二次规划 (Quadratic…
支持向量机原理(一) 线性支持向量机 支持向量机原理(二) 线性支持向量机的软间隔最大化模型 支持向量机原理(三)线性不可分支持向量机与核函数 支持向量机原理(四)SMO算法原理 支持向量机原理(五)线性支持回归 在SVM的前三篇里,我们优化的目标函数最终都是一个关于$\alpha$向量的函数.而怎么极小化这个函数,求出对应的$\alpha$向量,进而求出分离超平面我们没有讲.本篇就对优化这个关于$\alpha$向量的函数的SMO算法做一个总结. 1. 回顾SVM优化目标函数 我们首先回顾下我们…
SVM-非线性支持向量机及SMO算法 如果您想体验更好的阅读:请戳这里littlefish.top 线性不可分情况 线性可分问题的支持向量机学习方法,对线性不可分训练数据是不适用的,为了满足函数间隔大于1的约束条件,可以对每个样本$(x_i, y_i)$引进一个松弛变量$\xi_i \ge 0$,使函数间隔加上松弛变量大于等于1,, $$y_i (w \cdot x_i + b) \ge 1 - \xi_i$$ 目标函数变为 $$\frac 1 2 {||w||^2} + C \sum_{j=1…
S. S. Keerthi等人在Improvements to Platt's SMO Algorithm for SVM Classifier Design一文中提出了对SMO算法的改进,纵观SMO算法,其核心是怎么选择每轮优化的两个拉格朗日乘子,标准的SMO算法是通过判断乘子是否违反原问题的KKT条件来选择待优化乘子的,由KKT条件: 是否违反它,与这几个因素相关:拉格朗日乘子 .样本标记 .偏置b . b的更新依赖于两个优化拉格朗日乘子,这就可能出现这种情况:拉格朗日乘子 已经能使目标函数…
1. 前言 最近又重新复习了一遍支持向量机(SVM).其实个人感觉SVM整体可以分成三个部分: 1. SVM理论本身:包括最大间隔超平面(Maximum Margin Classifier),拉格朗日对偶(Lagrange Duality),支持向量(Support Vector),核函数(Kernel)的引入,松弛变量的软间隔优化(Outliers),最小序列优化(Sequential Minimal Optimization)等. 2. 核方法(Kernel):其实核方法的发展是可以独立于S…