前言 本文讨论如何使用 CUDA 对代码进行并行优化,并给出不同并行思路对均值滤波的实现. 并行优化的两种思路 思路1: global 函数 在 global 函数中创建出多个块多个线程对矩阵每个元素进行并行计算 请参考:http://www.cnblogs.com/scut-fm/p/3750119.html 思路2: CUDA 库 将遍历矩阵分别对每个元素的操作转化成以矩阵整体为单位的操作 请参考:http://www.cnblogs.com/scut-fm/p/3756242.html 两…
前言 本文讨论如何使用 CUDA 对代码进行并行优化,并给出不同并行思路对均值滤波的实现. 并行优化的两种思路 思路1: global 函数 在 global 函数中创建出多个块多个线程对矩阵每个元素进行并行计算 请参考:http://www.cnblogs.com/scut-fm/p/3750119.html 思路2: CUDA 库 将遍历矩阵分别对每个元素的操作转化成以矩阵整体为单位的操作 请参考:http://www.cnblogs.com/scut-fm/p/3756242.html 两…
封面:洛小汐 作者:潘潘 一直以来 他们都说为了生活 便追求所谓成功 顶级薪水.名牌包包 还有学区房 · 不过 总有人丢了生活 仍一无所获 · 我比较随遇而安 有些事懒得明白 平日里问心无愧 感兴趣的事能一直做 便很知足 · 难道不是 除了活着 其他都只是锦上添花吗 前言 上节我们介绍了 < Mybatis系列全解(六):Mybatis最硬核的API你知道几个? >一文,详细解读了 Mybatis 框架核心设计和 API ,图文并茂,干货满满,感兴趣的朋友可以往下翻目录找到文章的链接传送门进行…
用Python计算幂的两种方法: #coding:utf-8 #计算幂的两种方法.py #1.常规方法利用函数 #不使用递归计算幂的方法 """ def power(x,n): result=1 for i in range(n): 1 2 3 result*=x #result=result*x x=2 result=1*2 result=2*2 result=4*2 print result #2,4,8 null result=1*4 result=4*4 print…
php冒泡排序,两种思路,时间复杂度都是O(n^2),当然最优的时间复杂度就是O(n),以下说的都是正序排列(倒序的话,把内层循环的大于号换成小于号就好了) 第一种冒泡排序 思路就是把第一个数跟所有的数比较,如果碰到比第一个数还小的数字,就把他俩位置交换下,然后把交换后的数字继续往后比较...这样第一轮交换能得出什么呢,就是第一轮交换完,数组的第一个位置,一定是最小的数循环体内,每次$j = $i + 1, 因为外层每循环一次已经把最小的数压到数字头部了, 没必要从头开始比较了 $numbers…
1.Java多线程的概念 同一时间段内,位于同一处理器上多个已开启但未执行完毕的线程叫做多线程.他们通过轮寻获得CPU处理时间,从而在宏观上构成一种同时在执行的假象,实质上在任意时刻只有一个线程获得CPU资源执行,这种方式叫做并发. 线程状态图 说明:线程共包括以下5种状态.1. 新建状态(New)         : 线程对象被创建后,就进入了新建状态.例如,Thread thread = new Thread().2. 就绪状态(Runnable): 也被称为“可执行状态”.线程对象被创建后…
1.衍生维度. 在kylin中,如果某些维度都属于同一种类型,且数量较多,可以考虑做成衍生维度. 衍生维度就是将一批维度做成一张维度表,只在源表中保留这张表的外键,这样预处理的时候,就只会处理这个外键,而不会去处理维度表中的维度,降低cuboid的数量. 衍生维度用于在有效维度内将维度表上的非主键维度排除掉,在查询的时候实时进行聚合. 用衍生维度需要注意的一点是:如果从维度表主键到某个维度表维度所需要的聚合工作量非常大,那就不适合做衍生维度,实时进行聚合的时候会等待过长的时间. 2.使用聚合组…
如果有商品品类的数据pairRDD(categoryId,clickCount_orderCount_payCount),用Spark完成Top5,你会怎么做? 这里假设使用Java语言进行编写,那么你有两种思路: 1.简化成RDD(categoryObject),其中categoryObject实现了java.lang.Comparable.然后使用top(5)获得topN 2.转换成PairRDD(categoryKey,info),其中categoryKey实现了scala.math.Or…
Mysql优化(出自官方文档) - 第七篇 目录 Mysql优化(出自官方文档) - 第七篇 Optimizing Data Change Statements 1 Optimizing INSERT Statements 2 Optimizing UPDATE Statements 3 Optimizing DELETE Statements Optimizing Data Change Statements 主要涉及到三种操作:INSERT, UPDATE和DELETE 1 Optimizi…
我们在学数据结构的时候必然会接触栈(Stack),而栈有一个重要的应用是在程序设计语言中实现递归.递归用途十分广泛,比如我们常见的阶乘,如下代码: 1234 public static int (int n) { if (n == 1) return 1; return n * func1(n - 1);} 就可以用递归实现,而且实现相当简洁.如果要计算n的阶乘,那么只需知道n-1的阶乘再乘以n,同理依次类推,直到当我们计算2的阶乘的时候,只需知道1的阶乘,显然这是递归终止条件,再层层向上返回,…