lgb参数及调参】的更多相关文章

1 参数含义 max_depth: 设置树的最大深度,默认为-1,即不限制最大深度,它用于限制过拟合 num_leave: 单颗树的叶子数目,默认为31 eval_metric: 评价指标,可以用lgb自带的,也可以自定义评价函数, # 如下,评价函数为l1,程序会自动将预测值和标签传入eval_metric中,并返回score gbm = lgb.LGBMRegressor(num_leaves=31, learning_rate=0.05, n_estimators=20) gbm.fit(…
一.XGBoost参数解释 XGBoost的参数一共分为三类: 通用参数:宏观函数控制. Booster参数:控制每一步的booster(tree/regression).booster参数一般可以调控模型的效果和计算代价.我们所说的调参,很这是大程度上都是在调整booster参数. 学习目标参数:控制训练目标的表现.我们对于问题的划分主要体现在学习目标参数上.比如我们要做分类还是回归,做二分类还是多分类,这都是目标参数所提供的. Note: 我下面介绍的参数都是我觉得比较重要的, 完整参数请戳…
常规参数General Parameters booster[default=gbtree]:选择基分类器,可以是:gbtree,gblinear或者dart.gbtree和draf基于树模型,而gblinear基于线性模型. slient[default=0]:是否有运行信息输出,设置为1则没有运行信息输出. nthread[default to maximum number of threads available if not set]:线程数,默认使用能使用的最大线程数. 模型参数Boo…
lightgbm使用leaf_wise tree生长策略,leaf_wise_tree的优点是收敛速度快,缺点是容易过拟合. # lightgbm关键参数 # lightgbm调参方法cv 代码github地址 # -*- coding: utf-8 -*- """ # 作者:wanglei5205 # 邮箱:wanglei5205@126.com # 博客:http://cnblogs.com/wanglei5205 # github:http://github.com/w…
这是个人在竞赛中对LGB模型进行调参的详细过程记录,主要包含下面六个步骤: 大学习率,确定估计器参数n_estimators/num_iterations/num_round/num_boost_round: 确定num_leaves和max_depth 确定min_data_in_leaf 确定bagging_fraction+bagging_freq和feature_fraction 确定L1L2正则reg_alpha和reg_lambda: 降低学习率 [这里必须说一下,lightbg的参…
原文地址:Complete Guide to Parameter Tuning in Gradient Boosting (GBM) in Python by Aarshay Jain 原文翻译与校对:@酒酒Angie(drmr_anki@qq.com) && 寒小阳(hanxiaoyang.ml@gmail.com) 时间:2016年9月. 出处:http://blog.csdn.net/han_xiaoyang/article/details/52663170 1.前言 如果一直以来你…
本文重点阐述了xgboost和lightgbm的主要参数和调参技巧,其理论部分可见集成学习,以下内容主要来自xgboost和LightGBM的官方文档. xgboost Xgboost参数主要分为三大类: General Parameters(通用参数):设置整体功能 Booster Parameters(提升参数):选择你每一步的booster(树or回归) Learning Task Parameters(学习任务参数):指导优化任务的执行 General Parameters(通用参数)…
Auto ML自动调参 本文介绍Auto ML自动调参的算法介绍及操作流程. 操作步骤 登录PAI控制台. 单击左侧导航栏的实验并选择某个实验. 本文以雾霾天气预测实验为例. 在实验画布区,单击左上角的Auto ML > 模型自动调参. 在自动调参配置页面,选择需要调参的算法,单击下一步. 说明 一个实验中有多个算法时请单选一个算法. 在调参配置模块,选择调参方式,完成后单击下一步. 阿里云机器学习提供如下调参方式供选择: EVOLUTIONARY_OPTIMIZER 随机选定a个参数候选集(探…
上一节对XGBoost算法的原理和过程进行了描述,XGBoost在算法优化方面主要在原损失函数中加入了正则项,同时将损失函数的二阶泰勒展开近似展开代替残差(事实上在GBDT中叶子结点的最优值求解也是使用的二阶泰勒展开(详细上面Tips有讲解),但XGBoost在求解决策树和最优值都用到了),同时在求解过程中将两步优化(求解最优决策树和叶子节点最优输出值)合并成为一步.本节主要对XGBoot进行实现并调参. XGBoost框架及参数 XGBoost原生框架与sklearn风格框架 XGBoost有…
一.一般的模型调参原则 1.调参前提:模型调参其实是没有定论,需要根据不同的数据集和不同的模型去调.但是有一些调参的思想是有规律可循的,首先我们可以知道,模型不准确只有两种情况:一是过拟合,而是欠拟合.过拟合是指模型过于复杂,欠拟合是指模型过于简单. 2.查找资料:调参时应该知道每一个参数的默认值是多少,其增大或者减小会使模型更加复杂还是更加简单. 3.调参可以使用两种方法:1.学习曲线 2.网格搜索 学习曲线只能对参数一个一个进行调整,可以观察参数的增大或者减小具体对模型产生怎样的影响:网格搜…