numpy.unique】的更多相关文章

Find the unique elements of an array. Returns the sorted unique elements of an array. There are three optional outputs in addition to the unique elements: the indices of the input array that give the unique values, the indices of the unique array tha…
NumPy 数组操作: 1.修改数组形状 a.numpy.reshape(arr, newshape, order='C') 在不改变数据的条件下修改形状 b.numpy.ndarray.flat 是一个数组元素迭代器 c.numpy.ndarray.flatten(self, order) 返回一份数组拷贝,对拷贝数组修改不会影响原数组 d.numpy.ravel(a, order='C') 展开数组元素,顺序通常是 "C 风格",返回的是数组视图,即修改会影响原始数组 import…
(1)NumPy - 切片和索引 l  ndarray对象中的元素遵循基于零的索引. 有三种可用的索引方法类型: 字段访问,基本切片和高级索引. l  基本切片 Python 中基本切片概念到 n 维的扩展.切片只是返回一个观图. l  如果一个ndarray是非元组序列,数据类型为整数或布尔值的ndarray,或者至少一个元素为序列对象的元组,我们就能够用它来索引ndarray.高级索引始终返回数据的副本. 有两种类型的高级索引:整数和布尔值. 整数索引实例 import numpy as n…
Numpy 数组操作 Numpy 中包含了一些函数用于处理数组,大概可分为以下几类: 修改数组形状 翻转数组 修改数组维度 连接数组 分割数组 数组元素的添加与删除 修改数组形状 函数 描述 reshape 不改变数据的条件下修改形状 flat 数组元素迭代器 flatten 返回一份数组拷贝,对拷贝所做的修改不会影响原始数组 ravel 返回展开数组 numpy.reshape numpy.reshape 函数可以在不改变数据的条件下修改形状,格式如下: numpy.reshape(arr,…
Numpy (Numerical Python) 高性能科学计算和数据分析的基础包: ndarray,多维数组(矩阵),具有矢量运算能力,快速.节省空间: 矩阵运算,无需循环,可以完成类似Matlab中的矢量运算: 线性代数.随机送生成: ndarray ,N维数组对象(矩阵) 所有元素必须是相同类型 ndim属性,维度个数 shape属性,各维度大小 dtype属性,数据类型 代码示例: import numpy # 生成指定维度的随机多维数据(两行三列) data = numpy.rando…
https://blog.csdn.net/cxmscb/article/details/54583415 一.numpy概述 numpy(Numerical Python)提供了python对多维数组对象的支持:ndarray,具有矢量运算能力,快速.节省空间.numpy支持高级大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库. 二.创建ndarray数组 ndarray:N维数组对象(矩阵),所有元素必须是相同类型. ndarray属性:ndim属性,表示维度个数:shape…
本篇主要收集一些平时见到的 Numpy 函数. numpy.random.seed & numpy.random.RandomState np.random.seed() 和 np.random.RandomState 都用于生成随机数种子,np.random.seed() 是可以直接调用的方法,而 np.random.RandomState 则是一个产生随机数的容器,使用时需要创建实例对象,进而调用实例方法,如 np.random.RandomState(42).uniform() . 随机数…
Numpy支持大量的维度数组和矩阵运算,对数组运算提供了大量的数学函数库! Numpy比Python列表更具优势,其中一个优势便是速度.在对大型数组执行操作时,Numpy的速度比Python列表的速度快了好几百.因为Numpy数组本身能节省内存,并且Numpy在执行算术.统计和线性代数运算时采用了优化算法. Numpy的另一个强大功能是具有可以表示向量和矩阵的多维数组数据结构.Numpy对矩阵运算进行了优化,使我们能够高效地执行线性代数运算,使其非常适合解决机器学习问题. 与Python列表相比…
将条件逻辑表述为数组运算 numpy.where()是一个三目运算的表达式 In [34]: xarr = np.array([1.1,1.2,1.3,1.4,1.5]) In [35]: yarr = np.array([2.1,2.2,2.3,2.4,2.5]) In [36]: condi = np.array([True,False,True,True,False]) 假设有上面三个数组,当condi中的值为True的时候,从xarr中选取值,否则从yarr中选取值,组成一个新的数组.利…
Numpy 是Python中数据科学中的核心组件,它给我们提供了多维度高性能数组对象. Arrays Numpy.array   dtype 变量 dtype变量,用来存放数据类型, 创建数组时可以同时指定 import numpy print ('生成指定元素类型的数组:设置dtype属性') x = numpy.array([1,2.6,3],dtype = numpy.int64) print (x) # 元素类型为int64 [1 2 3] print (x.dtype) # int64…