实验二 K-近邻算法及应用】的更多相关文章

k近邻算法C++二维实现 这是一个k近邻算法的二维实现(即K=2的情况). #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #include <vector> #include <queue> #include <cmath> using namespace std; const double inf = 1000.…
  一.什么是K近邻算法? 定义: 如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. 来源: KNN算法最早是由Cover和Hart提出的一种分类算法. 计算距离公式: 两个样本的距离可以通过如下公式计算,又叫欧式距离. 比如说,a(a1,a2,a3),b(b1,b2,b3)   欧式距离 二.K近邻算法的实现 sk-learn近邻算法API sklearn.neighbors.KNeighborsClassifier(n_nei…
一.K近邻算法基础 KNN------- K近邻算法--------K-Nearest Neighbors 思想极度简单 应用数学知识少 (近乎为零) 效果好(缺点?) 可以解释机器学习算法使用过程中很多细节问题 更完整的刻画机器学习应用的流程 import numpy as np import matplotlib.pyplot as plt 实现我们自己的 kNN 创建简单测试用例 raw_data_X = [[3.393533211, 2.331273381], [3.110073483,…
(一)K近邻算法基础 K近邻(KNN)算法优点 思想极度简单 应用数学知识少(近乎为0) 效果好 可以解释机器学习算法使用过程中的很多细节问题 更完整的刻画机器学习应用的流程 图解K近邻算法 上图是以往病人体内的肿瘤状况,红色是良性肿瘤.蓝色是恶性肿瘤.显然这与发现时间的早晚以及肿瘤大小有密不可分的关系,那么当再来一个病人,我怎么根据时间的早晚以及肿瘤大小推断出这个新的病人体内的肿瘤(图中的绿色)是良性的还是恶性的呢? k近邻的思想便可以在这里使用,我根据距离(至于距离是什么样的距离,我们后面会…
数据挖掘入门系列教程(三)之scikit-learn框架基本使用(以K近邻算法为例) 简介 scikit-learn 估计器 加载数据集 进行fit训练 设置参数 预处理 流水线 结尾 数据挖掘入门系列教程(三)之scikit-learn框架基本使用(以K近邻算法为例) 数据挖掘入门系列博客:https://www.cnblogs.com/xiaohuiduan/category/1661541.html 项目地址:GitHub 在上一篇博客中,我们使用了简单的OneR算法对Iris进行分类,在…
转自 http://blog.csdn.net/v_july_v/article/details/8203674 ,感谢july的辛勤劳动 前言 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1.KD树:http://weibo.com/1580904460/z1PosdcKj:2.神经网络:http://weibo.com/1580904460/yBmhfrOGl:3.编程艺术第28章:http://weibo.com/1580904460/z4ZGFiDcY.你看到,blog内…
本文来自同步博客. P.S. 不知道怎么显示数学公式以及排版文章.所以如果觉得文章下面格式乱的话请自行跳转到上述链接.后续我将不再对数学公式进行截图,毕竟行内公式截图的话排版会很乱.看原博客地址会有更好的体验. 本文内容介绍机器学习的K近邻算法,用它处理分类问题.分类问题的目标是利用采集到的已经经过分类处理的数据来预测新数据属于何种类别. K近邻算法 K近邻算法对给定的某个新数据,让它与采集到的样本数据点分别进行比较,从中选择最相似的K个点,然后统计这K个点中出现的各个类别的频数,并判定频数最高…
一 KNN算法 1. KNN算法简介 KNN(K-Nearest Neighbor)工作原理:存在一个样本数据集合,也称为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类对应的关系.输入没有标签的数据后,将新数据中的每个特征与样本集中数据对应的特征进行比较,提取出样本集中特征最相似数据(最近邻)的分类标签.一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k近邻算法中k的出处,通常k是不大于20的整数.最后选择k个最相似数据中出现次数最多的分类作为新数据的…
转自 http://blog.csdn.net/likika2012/article/details/39619687 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1.KD树:2.神经网络:3.编程艺术第28章.你看到,blog内的文章与你于别处所见的任何都不同.于是,等啊等,等一台电脑,只好等待..”.得益于田,借了我一台电脑(借他电脑的时候,我连表示感谢,他说“能找到工作全靠你的博客,这点儿小忙还说,不地道”,有的时候,稍许感受到受人信任也是一种压力,愿我不辜负大家对我的信任…
算法名称: k近邻算法 (kNN: k-Nearest Neighbor) 问题提出: 根据已有对象的归类数据,给新对象(事物)归类. 核心思想: 将对象分解为特征,因为对象的特征决定了事对象的分类. 度量每个特征的程度,将其数字化. 所有特征值构成元组,作为该对象的坐标. 计算待检测对象和所有已知对象的距离,选择距离最接近的k个已知对象 (k近邻中的k来源于此). 这k个对象中出现次数最多的分类就是待检测对象的分类. 重要前提: 需要有一批已经正确归类了的对象存在.也就是通常说的训练数据. 重…