「SOL」序列计数sequence (模拟赛)】的更多相关文章

「SDOI2017」序列计数 思路: 矩阵快速幂: 代码: #include <bits/stdc++.h> using namespace std; #define mod 20170408 #define ll long long struct MatrixType { int n,m; ll ai[][]; void mem(int n_,int m_) { n=n_,m=m_; ;i<=n;i++) ;v<=m;v++) ai[i][v]=; } MatrixType op…
题意 题目链接 Sol 质数的限制并没有什么卵用,直接容斥一下:答案 = 忽略质数总的方案 - 没有质数的方案 那么直接dp,设\(f[i][j]\)表示到第i个位置,当前和为j的方案数 \(f[i + 1][(j + k) \% p] += f[i][j]\) 矩乘优化一下. #include<bits/stdc++.h> #define LL long long using namespace std; const int MAXN = 2e7 + 10, mod = 20170408,…
水题 #include <iostream> #include <cstring> #include <cstdio> using namespace std; typedef long long ll; int n, m, p, cnt[105], pri[2000005], ppp, ans=0; const int mod=20170408; bool isp[20000005]; struct Matrix{ int num[105][105]; Matrix…
问题 A: 星际旅行 时间限制: 1 Sec  内存限制: 256 MB 题面 题面谢绝公开. 考试心路历程 拿到这道题感觉很懵逼,所以先搞的T2和T3,最后码了个暴力,结果还不如直接输出‘0’得分高. 暴力码了T10,花了30多分钟,感觉亏大了.主要调起来比较恶心.各种玄学低错层出不穷. 开始码出来后交了,又拉下来手模一组样例测了,hack了,整个人开始慌张,然后就调.调了半天终于过了手模样例和题示样例,觉得稳了,就交了. 后来看提交记录,之前交的也是T10……亏了亏了…… 总结一下,别人这道…
Loj #3059. 「HNOI2019」序列 给定一个长度为 \(n\) 的序列 \(A_1, \ldots , A_n\),以及 \(m\) 个操作,每个操作将一个 \(A_i\) 修改为 \(k\).第一次修改之前及每次修改之后,都要求你找到一个同样长度为 \(n\) 的单调不降序列 \(B_1, \ldots , B_n\),使得 \(\sum_{i=1}^n (A_i −B_i)^2\) 最小,并输出该最小值.需要注意的是每次操作的影响都是独立的,也即每次操作只会对当前询问造成影响.为…
「HNOI2016」序列 有一些高妙的做法,懒得看 考虑莫队,考虑莫队咋移动区间 然后你在区间内部找一个最小值的位置,假设现在从右边加 最小值左边区间显然可以\(O(1)\),最小值右边的区间是断掉的,但注意它是单调的 于是每个点假装向左边第一个小于它的位置连边,就可以处理出前缀和一样的东西,然后预处理后也是\(O(1)\)的 Code: #include <cstdio> #include <cctype> #include <algorithm> #include…
#2051. 「HNOI2016」序列 题目描述 给定长度为 n nn 的序列:a1,a2,⋯,an a_1, a_2, \cdots , a_na​1​​,a​2​​,⋯,a​n​​,记为 a[1:n] a[1 \colon n]a[1:n].类似地,a[l:r] a[l \colon r]a[l:r](1≤l≤r≤N 1 \leq l \leq r \leq N1≤l≤r≤N)是指序列:al,al+1,⋯,ar−1,ar a_{l}, a_{l+1}, \cdots ,a_{r-1}, a_…
「JSOI2014」序列维护 传送门 其实这题就是luogu的模板线段树2,之所以要发题解就是因为学到了一种比较NB的 \(\text{update}\) 的方式.(参见这题) 我们可以把修改操作统一化,视为 \(ax + b\) 的形式,然后我们按照原来的套路来维护两个标记,分别代表 \(a\) 和 \(b\) ,那么我们的更新就可以这么写: inline void f(int p, int atag, int mtag, int l, int r) { t[p].sum = (t[p].su…
「BZOJ2839」集合计数 题目大意: 一个包含 \(n\) 个数的集合有 \(2^n\) 个子集,从这些子集中取出若干个集合(至少一个),使他们的交集的元素个数恰好为 \(k\),求方案数,答案对 \(1e9+7\) 取模. 首先考虑一个很直观的思路:我们钦定 \(k\) 个数是他们的交集,则这样的方案数为 \(\binom{n}{k}\) ,同时,包含这 \(k\) 个数的集合个数为 \(2^{n-k}\) ,每个集合有选与不选两个状态,但依据题意,不能够全部不选,所以这样得到的总方案数…
佳佳的魔法阵 背景 也许是为了捕捉猎物(捕捉MM?),也许是因为其它原因,总之,佳佳准备设计一个魔法阵.而设计魔法阵涉及到的最关键问题,似乎就是那些带有魔力的宝石的摆放-- 描述 魔法阵是一个\(n \times m\)的格子(高n,宽m),\(n \times m\)为偶数.佳佳手中有\(n \times m\)个宝石(以\(1 \to n \times m\)编号).佳佳从最右上角的格子开始走,从一个格子可以走到上.下.左.右4个相邻的格子,但不能走出边界.每个格子必须且仅能到过1次,这样佳…