使用场景:结果变量是类别型,二值变量和多分类变量,不满足正态分布  结果变量是计数型,并且他们的均值和方差都是相关的 解决方法:使用广义线性模型,它包含费正太因变量的分析 1.Logistics回归(因变量为类别型) 案例:匹配出发生婚外情的模型 1.查看数据集的统计信息 library(AER) data(Affairs,package = 'AER') summary(Affairs) table(Affairs$affairs) 结果:该数据从601位参与者收集了,婚外情次数,性别,年龄,…
1 问题来源 记得一开始学逻辑回归时候也不知道当时怎么想得,很自然就接受了逻辑回归的决策函数--sigmod函数: 与此同时,有些书上直接给出了该函数与将 $y$ 视为类后验概率估计 $p(y=1|x)$ 等价,即 并给出了二分类(标签 $yin(0,1)$)情况下的判别方式: 但今天再回过头看的时候,突然就不理解了,一个函数值是怎么和一个概率联系起来了呢?有些人解释说因为 $h_{theta}(x)$ 范围在0~1之间啊,可是数值在此之间还是没说明白和概率究竟有什么关系.所以,前几天看了一些资…
目录 1.理解回归树和模型树 2.回归树和模型树应用示例 1)收集数据 2)探索和准备数据 3)训练数据 4)评估模型 5)提高模型性能 1.理解回归树和模型树 决策树用于数值预测: 回归树:基于到达叶节点的案例的平均值做出预测,没有使用线性回归的方法. 模型树:在每个叶节点,根据到达该节点的案例建立多元线性回归模型.因此叶节点数目越多,一颗模型树越大,比同等回归树更难理解,但模型可能更精确. 将回归加入到决策树: 分类决策树中,一致性(均匀性)由熵值来度量:数值决策树,则通过统计量(如方差.标…
本文对应<R语言实战>第8章:回归 回归是一个广义的概念,通指那些用一个或多个预测变量(也称自变量或解释变量)来预测响应变量(也称因变量.效标变量或结果变量)的方法.通常,回归分析可以用来挑选与相应变量相关的解释变量,可以描述两者的关系,也可以生成一个等式,通过解释变量来预测响应变量. 回归分析的各种变体 回归类型 用途 简单线性 用一个量化的解释变量预测一个量化的响应变量 多项式 用一个量化的解释变量预测一个量化的响应变量,模型的关系是n阶多项式 多元线性 用两个或多个量化的解释变量预测一个…
Logistic Regression 同 Liner Regression 均属于广义线性模型,Liner Regression 假设 $y|x ; \theta$ 服从 Gaussian 分布,而 Logistic Regression 假设 $y|x ; \theta$ 服从 Bernoulli 分布. 这里来看线性回归,给定数据集 $\left \{ (x_i,y_i) \right \}_{i=1}^N$ ,$x_i$ 与 $y_i$ 的关系可以写成 $y_i = \theta^Tx_…
简单线性:用一个量化验的解释变量预测一个量化的响应变量 多项式:用一个量化的解决变量预测一个量化的响应变量,模型的关系是n阶多项式 多元线性:用两个或多个量化的解释变量预测一个量化的响应变量 多变量:用一个或多个解释变量预测多个响应变量 Logistic:用一个或多个解释变量预测一个类别型响应变量 泊松:用一个或多个解释变量预测一个代表频数的响应变量 Cox比例风险:用一个或多个解释变量预测一个事件发生的时间 时间序列:对误差项相关的时间序列数据建模 非线性:用一个或多个量化的解释变量预测一个量…
引言:通过高斯模型得到最小二乘法(线性回归),即:      通过伯努利模型得到逻辑回归,即:      这些模型都可以通过广义线性模型得到.广义线性模型是把自变量的线性预测函数当作因变量的估计值.在机器学习中,有很多模型都是基于广义线性模型的,比如传统的线性回归模型,最大熵模型,Logistic回归,softmax回归,等等.今天主要来学习如何来针对某类型的分布建立相应的广义线性模型. 广义线性模型 广义线性模型:广义线性模型是基于指数分布族(Exponential Family),而指数分布…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- SOM自组织映射神经网络模型 的R语言实现 笔者前言: 最近发现这个被发明于1982年的方法在如今得到了极为广泛的应用,在提倡深度学习的时候,基于聚类的神经网络方法被众多人青睐.但是呢, 网上貌似木有人贴出关于SOM模型的R语言实现,我就抛砖引玉一下.一.SOM模型定义与优劣 自组织映射 ( Self Organization Map, SOM…
3.1 单组样本符号秩检验(Wilcoxon signed-rank test) 3.1.1 方法简介 此处使用的统计分析方法为美国统计学家Frank Wilcoxon所提出的非参数方法,称为Wilcoxon符号秩 (signed-rank)检验,当数据中仅有单一组样本时,可用这种方法检验数据的中位数是否大于.小于或等于某一特定数值.当你的样本数较大时(通常样本个数≧30的样本可视为样本数较大),建议改以单组样本均值t检验(one-sample t-test)检验总体均值.注:总体中位数经常和均…
2.1 单组样本均值t检验(One-sample t-test) 2.1.1 方法简介 t检验,又称学生t(student t)检验,是由英国统计学家戈斯特(William Sealy Gosset, 1876-1937)所提出,student则是他的笔名.t检验是一种检验总体均值的统计方法,当数据中仅含单组样本且样本数较大时(通常样本个数≧30的样本可视为样本数较大),可用这种方法来检验总体均值是否大于.小于或等于某一特定数值.当数据中仅含单组样本但样本数较小时(通常样本个数<30的样本可视为…