Redis系列1:深刻理解高性能Redis的本质 Redis系列2:数据持久化提高可用性 Redis系列3:高可用之主从架构 Redis系列4:高可用之Sentinel(哨兵模式) Redis系列5:深入分析Cluster 集群模式 追求性能极致:Redis6.0的多线程模型 追求性能极致:客户端缓存带来的革命 Redis系列8:Bitmap实现亿万级数据计算 1 前言 我们在第一篇 深刻理解高性能Redis的本质 的时候就介绍过Redis的几种基本数据结构,它是基于不同业务场景而设计的: 动态…
腾讯开源再次迎来重磅项目,14日,腾讯正式宣布开源高性能图计算框架Plato,这是在短短一周之内,开源的第五个重大项目. 相对于目前全球范围内其它的图计算框架,Plato可满足十亿级节点的超大规模图计算需求,将算法计算时间从天级缩短到分钟级,性能全面领先领先于其它主流分布式图计算框架,并且打破了原本动辄需要数百台服务器的资源瓶颈,现在,最少只需要十台服务器即可完成计算. 腾讯Plato团队负责人于东海表示:"Plato已经支持腾讯内部包括微信在内的众多核心业务,尤其是为腾讯超大规模社交网络图数据…
腾讯开源再次迎来重磅项目,14日,腾讯正式宣布开源高性能图计算框架Plato,这是在短短一周之内,开源的第五个重大项目. 相对于目前全球范围内其它的图计算框架,Plato可满足十亿级节点的超大规模图计算需求,将算法计算时间从天级缩短到分钟级,性能全面领先领先于其它主流分布式图计算框架,并且打破了原本动辄需要数百台服务器的资源瓶颈,现在,最少只需要十台服务器即可完成计算. 腾讯Plato团队负责人于东海表示:“Plato已经支持腾讯内部包括微信在内的众多核心业务,尤其是为腾讯超大规模社交网络图数据…
一.概述 在前面章节中,主要了解了 Redis用到的主要数据结构,包括:简单动态字符串.链表(双端链表).字典.跳跃表. 整数集合.压缩列表(后面再了解).Redis没有直接使用这些数据结构来实现键值对数据库,而是基于这些数据结构创建一个对象系统,这个系统对象包括:字符串对象.列表对象.哈希对象(散列).集合对象.有序集合对象这五种类型,每种类型对象都用到了至少一种前面所介绍的数据结构. 通过这五种不同类型的对象,可以针对不同的使用场景, 在Redis 内部会为对象设置不同的数据结构实现,从而优…
Redis系列1:深刻理解高性能Redis的本质 Redis系列2:数据持久化提高可用性 Redis系列3:高可用之主从架构 Redis系列4:高可用之Sentinel(哨兵模式) Redis系列5:深入分析Cluster 集群模式 追求性能极致:Redis6.0的多线程模型 追求性能极致:客户端缓存带来的革命 Redis系列8:Bitmap实现亿万级数据计算 Redis系列9:Geo 类型赋能亿级地图位置计算 1 前言 我们来回顾下在这个系列的第一篇 深刻理解高性能Redis的本质 中介绍过R…
随笔分类 - redis 系列篇 redis 系列27 Cluster高可用 (2) 摘要: 一. ASK错误 集群上篇最后讲到,对于重新分片由redis-trib负责执行,关于该工具以后再介绍.在进行重新分片期间,源节点向目标节点迁移一个槽的过程中,可以会出现该槽中的一部分键值对保存在源节点中,另一部份键值对则保存在目标节点中. 当客户端向源节点发送一个与数据库键有关的命令时,并且命令要处阅读全文 posted @ 2018-12-27 14:41 花阴偷移 阅读(263) | 评论 (0)…
1 需求背景 该应用场景为DMP缓存存储需求,DMP需要管理非常多的第三方id数据,其中包括各媒体cookie与自身cookie(以下统称supperid)的mapping关系,还包括了supperid的人口标签.移动端id(主要是idfa和imei)的人口标签,以及一些黑名单id.ip等数据. 在hdfs的帮助下离线存储千亿记录并不困难,然而DMP还需要提供毫秒级的实时查询.由于cookie这种id本身具有不稳定性,所以很多的真实用户的 浏览行为会导致大量的新cookie生成,只有及时同步ma…
1 需求背景 该应用场景为DMP缓存存储需求,DMP需要管理非常多的第三方id数据,其中包括各媒体cookie与自身cookie(以下统称supperid)的mapping关系,还包括了supperid的人口标签.移动端id(主要是idfa和imei)的人口标签,以及一些黑名单id.ip等数据. 在hdfs的帮助下离线存储千亿记录并不困难,然而DMP还需要提供毫秒级的实时查询.由于cookie这种id本身具有不稳定性,所以很多的真实用户的浏览行为会导致大量的新cookie生成,只有及时同步map…
在移动应用的业务场景中,我们需要保存这样的信息:一个 key 关联了一个数据集合. 常见的场景如下: 给一个 userId ,判断用户登陆状态: 显示用户某个月的签到次数和首次签到时间: 两亿用户最近 7 天的签到情况,统计 7 天内连续签到的用户总数: 通常情况下,我们面临的用户数量以及访问量都是巨大的,比如百万.千万级别的用户数量,或者千万级别.甚至亿级别的访问信息. 所以,我们必须要选择能够非常高效地统计大量数据(例如亿级)的集合类型. 如何选择合适的数据集合,我们首先要了解常用的统计模式…
*****************开篇介绍**************** ----------------------------------------------------------------------------------------------------------------------- 三个重要的标准: ---大型缓存架构中需要首先说一下: 海量数据:支持海量数据缓存,支持大规模数据: 高并发:在亿级QPS的场景下,可以做到满足业务需求: 高可用:表示redis可以做…