libsvm使用方法总结】的更多相关文章

1.所需要软件下载: (1)libsvm(http://www.csie.ntu.edu.tw/~cjlin/libsvm/) (2)python (3)gnuplot 画图软件(ftp://ftp.gnuplot.info/pub/gnuplot/) 这里只考虑windows的环境: 1. 下载libsvm的zip包,只要解压到某个文件夹就好就好(随便D:\gjs\libsvm) 2.安装python(我的是2.7.3) 3.下载好gnuplot ,直接解压就好,无需安装(C:\gnuplot…
主要参考了一些博客以及自己使用经验.收集来觉得比较有用的. LIBSVM 数据格式需要---------------------- 决策属性  条件属性a  条件属性b  ... 2    1:7   2:5    ... 1    1:4   2:2    ... 数据格式转换---------------------- 当数据较少时,可以用formatdatalibsvm轻松地将文本数据转换成为svm工具使用的数据. 使用方法为: 1,打开FormatDataLibsvm.xls然后将数据粘…
LIBSVM 数据格式需要---------------------- 决策属性 条件属性a 条件属性b ... 2 1:7 2:5 ... 1 1:4 2:2 ... 数据格式转换---------------------- 当数据较少时,可以用formatdatalibsvm轻松地将文本数据转换成为svm工具使用的数据. 使用方法为: 1,打开FormatDataLibsvm.xls然后将数据粘贴到sheet1的topleft单元. 输入格式为: 条件属性a 条件属性b ... 决策属性 7…
近日在开始学习Machine Learning SVM 相关算法,将Matlab平台安装SVM的步骤记录如下,亲测可用: 开发环境: Windows 8 64 bit, Matlab 2016a, SVM toolbox: libsvm Libsvm 下载地址: https://www.csie.ntu.edu.tw/~cjlin/libsvm/ UCI的机器学习训练和测试样本数据: http://archive.ics.uci.edu/ml/datasets.html 步骤一: 下载libsv…
http://www.hankcs.com/ml/libsvm-usage.html libsvm使用说明 码农场 > 机器学习 2016-02-18 阅读(345) 评论(0)  目录   libsvm简介 libsvm编译安装 数据集 获取数据集 数据集格式 svm_scale用法 未标准化的例子 标准化方法 svm_scale参数 svm_toy用法 svm_train用法 参数 调参 用法 可视化 svm_predict用法 Reference 本文记录了libsvm的使用方法.参数说明…
转载博文:win10(64-bit) + python3.6.0(64-bit) 配置libsvm-3.22 https://blog.csdn.net/weixin_35884839/article/details/79398085   (亲测是成功的!) 测试例子: https://blog.csdn.net/jeryjeryjery/article/details/72628255 libsvm的README: The above command loads svm_train() : t…
本次实验的数据是来自老师给的2006-2008年的日期,24小时的温度.电力负荷数据,以及2009年的日期,24小时的温度数据,目的是预测2009年每天24小时的电力负荷,实验数据本文不予给出. 用libsvm进行预测的步骤大体是:将数据进行归一化处理,并转换成livsvm需要的格式,然后进行参数择优,用选的最佳参数使用2006-2008 3年的数据建立模型,再用该模型预测2009年的电力负荷.实际过程中,我先用2006-2007年的数据建模,预测2008年的数据,以得到测试误差.事实证明,用2…
鉴于libSVM中的readme文件有点长,并且,都是採用英文书写,这里,我把当中重要的内容提炼出来,并给出对应的样例来说明其使用方法,大家能够直接參考我的代码来调用libSVM库. 第一部分,利用libSVM自带的简易工具来演示SVM的两类分类过程.(下面内容仅仅是利用libSVM自带的一个简易的工具供大家更好的理解SVM,假设你对SVM已经有了一定的了解,能够直接跳过这部分内容) 首先,你要了解的是libSVM仅仅是众多SVM实现版本号中的当中之中的一个.而SVM是一种进行两类分类的分类器,…
一.实验目的和内容 (一)实验目的 1.熟悉支持向量机SVM(Support Vector Machine)模型分类算法的使用. 2.用svm-train中提供的代码框架(填入SVM分类器代码)用train.data训练数据提供的矩阵来训练参数得到训练模型model,利用libsvm进行模型的训练,分类预测等. 3.利用model和svm-train的代码来分类测试数据集test.data,并报告其分类正确率. (二)实验内容 支持向量机将向量映射到一个更高维的空间裡,在这个空间里建立有一个最大…
原文:http://blog.sina.com.cn/s/blog_57a1cae80101bit5.html 举例说明 svmtrain -s 0 -?c 1000 -t 1 -g 1 -r 1 -d 3 data_file 训练一个由多项式核(u'v+1)^3和C=1000组成的分类器. svmtrain -s 1 -n 0.1 -t 2 -g 0.5 -e 0.00001 data_file 在RBF核函数exp(-0.5|u-v|^2)和终止允许限0.00001的条件下,训练一个?-SV…