论文的caffemodel转化为tensorflow模型过程中越坑无数,最后索性直接用caffe提特征. caffe提取倒数第二层,pool5的输出,fc1000层的输入,2048维的特征 #coding=utf-8 import caffe import os import numpy as np import scipy.io as sio #路径设置 OUTPUT='E:/caffemodel/'#输出txt文件夹 root='E:/caffemodel/' #根目录 deploy=roo…
caffe是C++语言写的,可能很多人不太熟悉,因此想用更简单的脚本语言来实现.caffe提供matlab接口和python接口,这两种语言就非常简单,而且非常容易进行可视化,使得学习更加快速,理解更加深入. 半年前,我在学习CAFFE的时候,为了加深理解,因此写下了随笔,有了一系列的caffe学习文章.半年过去,很多人问到关于python接口和可视化的一些问题,现在有点空闲时间,就再次写下一些随笔,大家一起来学习.有些重复的内容,我就不再多讲,如果大家有兴趣可移步: 如何配置CAFFE的pyt…
相信看这篇文章的都知道caffe是干嘛的了,无非就是深度学习.神经网络.计算机视觉.人工智能这些,这个我就不多介绍了,下面说说我的安装过程即遇到的问题,当然还有解决方法. 说下我的环境:1>虚拟机:VM Workstation 12 Player 2>OS:redhat7.1 虚拟机装好之后因为RedHat的yum服务是收费的,为了倒腾免费yum源看网上的教程,坑了一b,浪费了N久时间,最后得高人指点得以成功,写了个blog:redhat配置免费yum源 步入正题,安装caffe.再次建议大家…
下面是基于我自己的接口,我是用来分类一维数据的,可能不具通用性: (前提,你已经编译了caffe的python的接口) 添加 caffe塻块的搜索路径,当我们import caffe时,可以找到. 对于这一步,一般我们都会把 cafffe 模块的搜索路经永久地加到先加$PYTHONPATH中去,如可以把 export PYTHONPATH=/path/to/caffe/python:$PYTHONPATH 写到 .bashrc中.而下面的做法,只是临时的做法哦: improt sys #sys.…
00-classification 主要讲的是如何利用caffenet(与Alex-net稍稍不同的模型)对一张图片进行分类(基于imagenet的1000个类别) 先说说教程到底在哪(反正我是找了半天也没发现...) 其实并没有官方教程一说,只是在caffe/example/下有 00-classification.ipynb: 01-learning-lenet.ipynb: 02-fine-tuning.ipynb: 等等一些列 ipython notebook文件,里面就是一些examp…
使用python接口来运行caffe程序,主要的原因是python非常容易可视化.所以不推荐大家在命令行下面运行python程序.如果非要在命令行下面运行,还不如直接用 c++算了. 推荐使用jupyter notebook,spyder等工具来运行python代码,这样才和它的可视化完美结合起来. 因为我是用anaconda来安装一系列python第三方库的,所以我使用的是spyder,与matlab界面类似的一款编辑器,在运行过程中,可以查看各变量的值,便于理解,如下图: 只要安装了anac…
前段时间在笔记本上配置了Caffe框架,中间过程曲曲折折,但由于懒没有将详细过程总结下来,这两天又在一台配置较高的台式机上配置了Caffe,配置时便非常后悔当初没有写到博客中去,现已配置好Caffe,故应当立即写到博客中去,不可再拖延~ 准备工具:Win7(64位):Caffe;vs2013;anaconda; (附注:1.Caffe下载链接:https://github.com/Microsoft/caffe(这其中有两个版本,一个是Caffe-Windows(微软制作),一个是Caffe-M…
http://blog.csdn.net/qq_25073253/article/details/72571714http://blog.csdn.net/greed7480/article/details/68486039 首先在你要安装的路径下 clone :git clone https://github.com/BVLC/caffe.git 进入 caffe ,将 Makefile.config.example 文件复制一份并更名为 Makefile.config ,也可以在 caffe…
官方参考:http://caffe.berkeleyvision.org/installation.html 官方介绍是这样的: Python The main requirements are numpy and boost.python (provided by boost).pandas is useful too and needed for some examples. You can install the dependencies with: for req in $(cat re…
如果用公式  y=f(wx+b) 来表示整个运算过程的话,那么w和b就是我们需要训练的东西,w称为权值,在cnn中也可以叫做卷积核(filter),b是偏置项.f是激活函数,有sigmoid.relu等.x就是输入的数据. 数据训练完成后,保存的caffemodel里面,实际上就是各层的w和b值. 我们运行代码: deploy=root + 'mnist/deploy.prototxt' #deploy文件 caffe_model=root + 'mnist/lenet_iter_9380.ca…