Python机器学习--降维】的更多相关文章

主成分分析(PCA) 测试 # -*- coding: utf-8 -*- """ Created on Thu Aug 31 14:21:51 2017 @author: Administrator """ import matplotlib.pyplot as plt from sklearn.decomposition import PCA from sklearn.datasets import load_iris data = load…
许多机器学习算法都有一个假设:输入数据要是线性可分的.感知机算法必须针对完全线性可分数据才能收敛.考虑到噪音,Adalien.逻辑斯蒂回归和SVM并不会要求数据完全线性可分. 但是现实生活中有大量的非线性数据,此时用于降维的线性转换手段比如PCA和LDA效果就不会太好.这一节我们学习PCA的核化版本,核PCA.这里的"核"与核SVM相近. 运用核PCA,我们能将非线性可分的数据转换到新的.低维度的特征子空间,然后运用线性分类器解决. 核函数和核技巧 还记得在核SVM那里,我们讲过解决非…
Python机器学习简介 第一章 让计算机从数据中学习 将数据转化为知识 三类机器学习算法 第二章 训练机器学习分类算法 透过人工神经元一窥早期机器学习历史 使用Python实现感知机算法 基于Iris数据集训练感知机模型 自适应线性神经元及收敛问题 Python实现自适应线性神经元 大规模机器学习和随机梯度下降 第三章 使用Scikit-learn进行分类器之旅 如何选择合适的分类器算法 scikit-learn之旅 逻辑斯蒂回归对类别概率建模 使用正则化解决过拟合 支持向量机 使用松弛变量解…
建议Ctrl+D保存到收藏夹,方便随时查看 人工智能(AI)学习资料库 Python机器学习简介 第一章 让计算机从数据中学习 将数据转化为知识 三类机器学习算法 第二章 训练机器学习分类算法 透过人工神经元一窥早期机器学习历史 使用Python实现感知机算法 基于Iris数据集训练感知机模型 自适应线性神经元及收敛问题 Python实现自适应线性神经元 大规模机器学习和随机梯度下降 第三章 使用Scikit-learn进行分类器之旅 如何选择合适的分类器算法 scikit-learn之旅 逻辑…
分享一篇来自机器之心的文章.关于机器学习的起步,讲的还是很清楚的.原文链接在:只需十四步:从零开始掌握Python机器学习(附资源) Python 可以说是现在最流行的机器学习语言,而且你也能在网上找到大量的资源.你现在也在考虑从 Python 入门机器学习吗?本教程或许能帮你成功上手,从 0 到 1 掌握 Python 机器学习,至于后面再从 1 到 100 变成机器学习专家,就要看你自己的努力了.本教程原文分为两个部分,机器之心在本文中将其进行了整合,原文可参阅:suo.im/KUWgl 和…
网上有很多关于sklearn的学习教程,大部分都是简单的讲清楚某一方面,其实最好的教程就是官方文档. 官方文档地址:https://scikit-learn.org/stable/ (可是官方文档非常详细,同时许多人对官方文档的理解和结构上都不能很好地把握,我也打算好好学习sklearn,这可能是机器学习的神器),下面先简单介绍一下sklearn. 自2007年发布以来,scikit-learn已经成为Python重要的机器学习库了,scikit-learn简称sklearn,支持包括分类,回归…
机器学习岗位的面试中通常会对一些常见的机器学习算法和思想进行提问,在平时的学习过程中可能对算法的理论,注意点,区别会有一定的认识,但是这些知识可能不系统,在回答的时候未必能在短时间内答出自己的认识,因此将机器学习中常见的原理性问题记录下来,保持对各个机器学习算法原理和特点的熟练度. 本文总结了机器学习一些面试题和笔试题,以便自己学习,当然了也为了方便大家,题目是网上找的额,如果有侵权请联系小编,还有,不喜勿喷,谢谢!!! 算法分类 下面图片是借用网友做的,很好的总结了机器学习的算法分类: 问答题…
作者简介: Matthew Mayo    翻译:王鹏宇 开始.这是最容易令人丧失斗志的两个字.迈出第一步通常最艰难.当可以选择的方向太多时,就更让人两腿发软了. 从哪里开始? 本文旨在通过七个步骤,使用全部免费的线上资料,帮助新人获取最基本的 Python 机器学习知识,直至成为博学的机器学习实践者.这篇概述的主要目的是带领读者接触众多免费的学习资源.这些资源有很多,但哪些是最好的?哪些相互补充?怎样的学习顺序才最好? 我假定本文的读者不是以下任何领域的专家: 机器学习 Python 任何Py…
之前一篇笔记: Python机器学习笔记:不得不了解的机器学习知识点(1) 1,什么样的资料集不适合用深度学习? 数据集太小,数据样本不足时,深度学习相对其它机器学习算法,没有明显优势. 数据集没有局部相关特性,目前深度学习表现比较好的领域主要是图像/语音/自然语言处理等领域,这些领域的一个共性是局部相关性.图像中像素组成物体,语音信号中音位组合成单词,文本数据中单词组合成句子,这些特征元素的组合一旦被打乱,表示的含义同时也被改变.对于没有这样的局部相关性的数据集,不适于使用深度学习算法进行处理…
转载:只需十四步:从零开始掌握Python机器学习(附资源) Python 可以说是现在最流行的机器学习语言,而且你也能在网上找到大量的资源.你现在也在考虑从 Python 入门机器学习吗?本教程或许能帮你成功上手,从 0 到 1 掌握 Python 机器学习,至于后面再从 1 到 100 变成机器学习专家,就要看你自己的努力了.本教程原文分为两个部分,机器之心在本文中将其进行了整合,原文可参阅:suo.im/KUWgl 和 suo.im/96wD3.本教程的作者为 KDnuggets 副主编兼…