树剖 lca】的更多相关文章

GeneralLiu  橙边为轻边 红边为重边 绿数为每个点的 top 橙数为每个点的编号 步骤 1 先预处理 每个点的 deep深度  size子树大小  dad父节点 2 再预处理 每个点的 top重链顶点 3 就是跳了 应用 洛谷 P2912 [USACO08OCT] 牧场散步 效率蛮高的 此题中用 len[i] 表示 i 到根距离 询问 x 和 y 的距离 答案可用 len[x] + len[y] - 2*len[ lca(x,y) ]表示 而 lca 可以用树剖求出 len[] 在树剖…
BZOJ_2286_[Sdoi2011]消耗战_虚树+树形DP Description 在一场战争中,战场由n个岛屿和n-1个桥梁组成,保证每两个岛屿间有且仅有一条路径可达.现在,我军已经侦查到敌军的总部在编号为1的岛屿,而且他们已经没有足够多的能源维系战斗,我军胜利在望.已知在其他k个岛屿上有丰富能源,为了防止敌军获取能源,我军的任务是炸毁一些桥梁,使得敌军不能到达任何能源丰富的岛屿.由于不同桥梁的材质和结构不同,所以炸毁不同的桥梁有不同的代价,我军希望在满足目标的同时使得总代价最小. 侦查部…
这居然是我第一次写线段树合并--所以我居然在合并的时候加点结果WAWAWAMLEMLEMLE--!ro的时候居然直接指到la就行-- 树上差分,每个点建一棵动态开点线段树,然后统计答案的时候合并即可 #include<iostream> #include<cstdio> #include<queue> using namespace std; const int N=100005; int n,m,h[N],cnt,de[N],fa[N],si[N],hs[N],fr[…
LCA的类型多种多样,只说我知道的,就有倍增求LCA,tarjin求LCA和树链剖分求LCA,当然,也还有很多其他的方法. 其中最常用,速度最快的莫过于树链剖分的LCA了. 树链剖分,首先字面理解一下,什么是树链剖分. 就是把一棵树剖分为若干条链,然后利用数据结构(树状数组,SBT,Splay,线段树等等)去维护每一 条链,复杂度为O(logn) 那么,树链剖分的第一步当然是对整棵树进行遍历,预处理一些要用的变量. void dfs(int now){ siz[now]=; deep[now]=…
题目链接: TP 题解:   可能是我比较纱布,看不懂题解,只好自己想了…… 先附一个离线版本题解[Ivan] 我们考虑对于询问区间是可以差分的,然而这并没有什么卵用,然后考虑怎么统计答案. 首先LCA一定是z的祖先(这里说的祖先包括自己,以下祖先均为此概念)节点,也就是是说我们只要计算出每个祖先节点的贡献就可以了,再考虑每个祖先的贡献如何计算. 我们发现对于深度其实是该点到root的路径点数,所以我们可以这样想,我们询问z的祖先的答案,就是在计算有对于给定区间有多少个点经过了z的祖先. 那么思…
1.tarjan求lca 思想: void tarjan(int u,int f){ for(int i=---){//枚举边 if(v==f) continue; dfs(v); //继续搜 unionn(v);//合并 vis[v]=; //标记 } for(int i){// 和u有关的询问 if(vis[v]) lca=find(v); //若访问过,lca为find(v) } } 模板代码 #include<bits/stdc++.h> #define rep(i,x,y) for(…
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3626 题意: 给出一个n个节点的有根树(编号为0到n-1,根节点为0,n <= 50000). 一个点的深度定义为这个节点到根的距离+1. 设dep[i]表示点i的深度,LCA(i,j)表示i与j的最近公共祖先. 有q次询问,每次询问给出l,r,z,求∑ dep[LCA(i,z)] (l<=i<=r). (即,求在[l,r]区间内的每个节点i与z的最近公共祖先的深度之和) 题解:…
Yixght is a manager of the company called SzqNetwork(SN). Now she's very worried because she has just received a bad news which denotes that DxtNetwork(DN), the SN's business rival, intents to attack the network of SN. More unfortunately, the origina…
不太优美但是有注释的版本: #include<cstdio> #include<iostream> using namespace std; struct edge{ int to,ne; }e[1000005]; int n,m,s,ecnt,head[500005],dep[500005],siz[500005],son[500005],top[500005],f[500005]; void add(int x,int y) //加边 { e[++ecnt].to=y; e[e…
树链剖分 顾名思义,就是把一课时分成若干条链,使得它可以用数据结构(例如线段树)来维护 一些定义: 重儿子:子树最大的儿子 轻儿子:除了重儿子以外的儿子 重边:父节点与重儿子组成的边 轻边:除重边以外的边 重链:重边连接而成的链 轻链:轻边连接而成的链 链头:一条链上深度最小的点 第一步:进行进行轻重边的划分. 定义size[x]为以x为根的子树节点个数,令v为u儿子中size值最大的节点,那么(u,v)就是重边,其它出边都是轻边 两个重要性质: 1.轻边(u,v)中,Size[v]<size[…