Attentional Pooling for Action Recognition 简介 这是一篇NIPS的文章,文章亮点是对池化进行矩阵表示,使用二阶池的矩阵表示,并将权重矩阵进行低秩分解,从而使分解后的结果能够自底向上和自顶向下的解释,并巧用attention机制来解释,我感觉学到了很多东西,特别是张量分解等矩阵论的知识点. 基础概念 低秩分解 目的:去除冗余并减少模型的权值参数 方法:使用两个K*1的卷积核代替掉一个K*K的卷积核 原理:权值向量主要分布在一些低秩子空间,使用少量的基就可…
这是期刊论文的版本,不是会议论文的版本.看了论文之后,只能说,太TM聪明了.膜拜~~ 视频的表示方法有很多,一般是把它看作帧的序列.论文提出一种新的方法去表示视频,用ranking function的参数编码视频的帧序列.它使用一个排序函数(ranking function)主要基于这样的假设:帧的appearance的变化与时间相关,如果帧vt+1在vt后面,则定义:此外,假设同一动作的视频帧序列,学习到的排序函数的参数,应该的大致一致的.但实际上,后面的假设并没有给出严格的证明,只能说实验的…
论文的关注点在于如何提高bounding box的定位,使用的是概率的预测形式,模型的基础是region proposal.论文提出一个locNet的深度网络,不在依赖于回归方程.论文中提到locnet可以很容易与现有的detection系统结合,但我困惑的是(1)它们的训练的方法,这点论文中没有明确的提到,而仅仅说用迭代的方法进行(2)到底两者的融合后两个网络的结构是怎样呢?可以看做一个多任务的系统,还是存在两个网络呢? 检测方法 输入的候选bounding box(使用selective s…
论文的重点在于后面approximation部分. 在<Rank Pooling>的论文中提到,可以通过训练RankSVM获得参数向量d,来作为视频帧序列的representation.而在dynamic论文中发现,这样的参数向量d,事实上与image是同等大小的,也就是说,它本身是一张图片(假如map与image同大小而不是提取的特征向量),那么就可以把图片输入到CNN中进行计算了.如下图可以看到一些参数向量d pooling的样例 参数向量d的快速计算 把计算d的过程定义一个函数.一个近似…
  End-to-End Learning of Action Detection from Frame Glimpses in Videos  CVPR 2016  Motivation:    本文主要是想借助空间的 attention model 来去协助进行行人识别的工作.作者认为 long, read-world videos 是一个非常具有挑战的视觉问题.算法必须推理出是否出现了某个 action, 并且还要在时间步骤上推出出现在什么时刻.大部分的工作都是通过构建 frame-lev…
论文的三个贡献 (1)提出了two-stream结构的CNN,由空间和时间两个维度的网络组成. (2)使用多帧的密集光流场作为训练输入,可以提取动作的信息. (3)利用了多任务训练的方法把两个数据集联合起来. Two stream结构 视屏可以分成空间与时间两个部分,空间部分指独立帧的表面信息,关于物体.场景等:而时间部分信息指帧间的光流,携带着帧之间的运动信息.相应的,所提出的网络结构由两个深度网络组成,分别处理时间与空间的维度. 可以看到,每个深度网络都会输出一个softmax层,最后会通过…
密集轨迹的方法是通过在视频帧上密集地采样像素点并且在追踪,从而构造视频的局部描述子,最后对视频进行分类的方法依然是传统的SVM等方法. 生成密集轨迹: (1)从8个不同的空间尺度中采样,它们的尺度差因子为,而采样的点只需要简单地每间隔W = 5个像素取一个点即可. (2)对于下一个点位置的估计,通过估计密集光流场获得,有以下计算公式: ,其中M是均值过滤器,就是计算的光流场,是Pt周围的点.这样可以对采样点逐帧追踪. (3)为了防止轨迹点的漂移,密集轨迹最多追踪L帧.当在一个W*W的邻域内没有发…
生成式对抗网络GAN 1.  基本GAN 在论文<Generative Adversarial Nets>提出的GAN是最原始的框架,可以看成极大极小博弈的过程,因此称为“对抗网络”.一般包含两个部分:生成器(Generator)和判别器(Discriminator).训练的过程是无监督学习. 先总结一下训练的过程.一般而言,输入是一个一维向量z,它从先验生成.假设现在Generator生成的是图像.我们知道,无监督学习目的是学习数据集中的特征(或者说分布),假设真实的分布为,而Generat…
由RCNN到FAST RCNN一个很重要的进步是实现了多任务的训练,但是仍然使用Selective Search算法来获得ROI,而FASTER RCNN就是把获得ROI的步骤使用一个深度网络RPN来实现.一个FASTER RCNN可以看作是一个RPN + FAST RCNN的组合,两者通过共享CONV LAYERS组合在一起. RPN网络 一张图片先经过CONV LAYERS得到feature map,图片的大小是任意的.然后,使用一个小的滑动网络,它与feature map的一个n*n的小窗…
Fast RCNN的结构: 先从这幅图解释FAST RCNN的结构.首先,FAST RCNN的输入是包含两部分,image以及region proposal(在论文中叫做region of interest,ROI).Image经过深度网络(deep network)之后得到feature map,然后可以从feature map中找到ROI在其中的投射projection得到每个patch,但论文没有提及怎么在map中寻找对应的patch,估计可以通过位置关系找到(猜想,因为deep Conv…